Ion transport in both the frog skin (a high-resistance epithelium) and the rabbit nasal airway epithelium (a low-resistance epithelium) are dominated by electrogenic Na+ absorption via apical membrane amiloride-sensitive Na+ channels, and short-circuit current (ISC) is essentially a measure of Na+ absorption in both epithelia. In both epithelia, mucosal application of the short-chain phospholipid didecanoyl-L-alpha-phosphatidylcholine (DDPC) dose-dependently inhibited the amiloride-sensitive ISC and caused an initial decrease in epithelial conductance (Gt) followed by an increase in Gt to steady-state values above control level. The effects were reversible. It is concluded that DDPC (a) inhibits epithelial amiloride-sensitive Na+ channels and (b) induces an increase in paracellular tight junction conductance. These effects may involve changes in non-specific lipid-protein interactions at the cell membrane level.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0300-9629(97)00069-8DOI Listing

Publication Analysis

Top Keywords

na+ channels
12
short-chain phospholipid
8
tight junction
8
junction conductance
8
na+ absorption
8
amiloride-sensitive na+
8
na+
5
comparative aspects
4
aspects actions
4
actions short-chain
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!