Plant calcium can modulate a particular plant-pathogen interaction and have a decisive role in disease development. Enhanced resistance to the phytopathogenic enterobacterium Erwinia carotovora, the causal agent of bacterial soft rot disease, is observed in high-calcium plants. One of the main virulence determinants of E. carotovora, the PehA endopolygalacturonase, is specifically required in the early stages of the infection. Production of PehA was found to be dependent on the calcium concentration in the bacterial environment. An increase in extracellular calcium to mM concentrations repressed pehA gene expression without reducing or even enhancing expression of other extracellular enzyme-encoding genes of this pathogen. An increase in plant calcium levels could be correlated to enhanced resistance to E. carotovora infection and to an inhibition of in planta production of PehA. Ectopic expression of pehA from a calcium-insensitive promoter allowed E. carotovora to overcome this calcium-induced resistance. The results imply that plant calcium can constitute an important signal molecule in plant-pathogen interaction, which acts by modulating the expression of virulence genes of the pathogen.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2958.1997.mmi501.xDOI Listing

Publication Analysis

Top Keywords

plant calcium
16
gene expression
8
erwinia carotovora
8
plant-pathogen interaction
8
enhanced resistance
8
production peha
8
genes pathogen
8
calcium
6
expression
5
carotovora
5

Similar Publications

Influence of drought stress on phosphorus dynamics and maize growth in tropical ecosystems.

BMC Plant Biol

January 2025

Center for Eco-Environment Restoration of Hainan Province, School of Ecology, Hainan University, Haikou, 570228, China.

Drought has a significant impact on ecosystem functions, especially on the biogeochemical cycling of phosphorus (P), which is a crucial nutrient for plant growth and productivity. Despite its importance, the effects of different drought scenarios on soil P cycling and availability remain poorly understood in previous studies. This study simulated drought conditions in tropical soils using maize as a test crop under varying field capacity (FC) levels (100%, 80%, 60%, 40%, and 20%) over a 60-day pot experiment.

View Article and Find Full Text PDF

Growth, physiological and molecular response of calcium and salicylic acid primed wheat under lead stress.

Mol Biol Rep

January 2025

Plant Protection and Bimolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab 21934, Alexandria, Egypt.

Background: Heavy metal contamination, particularly from lead (Pb), poses a significant threat to plant agriculture worldwide, adversely affecting growth, physiological functions, and yield. Signalling molecules such as calcium and salicylic acid are known to mitigate various stresses in plants, prompting this study to explore their interaction with Pb stress in wheat.

Methods: A pot experiment was conducted in which wheat grains were primed with either distilled water, 5 mM calcium (Ca), or 0.

View Article and Find Full Text PDF

Metal ion transport in maize: survival in a variable stress environment.

J Genet Genomics

January 2025

State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China. Electronic address:

Maize (Zea mays) is the most widely cultivated crop in the world. Maize production is closely linked to the extensive uptake and utilization of various mineral nutrients. Potassium (K), calcium (Ca), and magnesium (Mg) are essential metallic macronutrients for plant growth and development.

View Article and Find Full Text PDF

Zeatin Elicits Premature Erythrocyte Senescence Through Calcium and Oxidative Stress Mediated by the NOS/PKC/CK1α Signaling Axis.

Dose Response

January 2025

Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia.

Cytokinins are plant hormones that regulate cell growth and differentiation. In particular, zeatin (ZTN) delays cellular senescence of human fibroblasts and keratinocytes and exhibits anticancer activity. Chemotherapy-induced anemia is a major side effect of anticancer therapy secondary to premature senescence of red blood cells (RBCs).

View Article and Find Full Text PDF

Transient amorphous phases are known as functional precursors in the formation of crystalline materials, both in vivo and in vitro. A common route to regulate amorphous calcium carbonate (ACC) crystallization is via direct interactions with negatively charged macromolecules. However, a less explored phenomenon that can influence such systems is the electrostatically driven formation of Ca-macromolecule dense phases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!