GABA is a major inhibitory neurotransmitter in the mammalian retina and it acts at many different sites via a variety of postsynaptic receptors. These include GABAA receptors and bicuculline-resistant GABAC receptors. The release of acetylcholine (ACh) is inhibited by GABA and strongly potentiated by GABA antagonists. In addition, GABA appears to mediate the null inhibition which is responsible for the mechanism of directional selectivity in certain ganglion cells. We have used these two well-known examples of GABA inhibition to compare three GABA antagonists and assess the contributions of GABAA and GABAC receptors. All three GABA antagonists stimulated ACh release by as much as ten-fold. By this measure, the ED50s for SR-95531, bicuculline, and picrotoxin were 0.8, 7.0, and 14 microM, respectively. Muscimol, a potent GABAA agonist, blocked the effects of SR-95531 and bicuculline, but not picrotoxin. This indicates that SR-95531 and bicuculline are competitive antagonists at the GABAA receptor, while picrotoxin blocks GABAA responses by acting at a different, nonreceptor site such as the chloride channel. In the presence of a saturating dose of SR-95531 to completely block GABAA receptors, picrotoxin caused a further increase in the release of ACh. This indicates that picrotoxin potentiates ACh release by a mechanism in addition to the block of GABAA responses, possibly by also blocking GABAC receptors, which have been associated with bipolar cells. All three GABA antagonists abolished directionally selective responses from ON/OFF directional-selective (DS) ganglion cells. In this system, the ED50S for SR-95531, bicuculline, and picrotoxin were 0.7 microM, 8 microM, and 94.6 microM, respectively. The results with SR-95531 and bicuculline indicate that GABAA receptors mediate the inhibition responsible for directional selectivity. The addition of picrotoxin to a high dose of SR-95531 caused no further increase in firing rate. The comparatively high dose required for picrotoxin also suggests that GABAC receptors do not contribute to directional selectivity. This in turn suggests that feedforward GABAA inhibition, as opposed to feedback at bipolar terminals, is responsible for the null inhibition underlying directional selectivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1017/s0952523800011652 | DOI Listing |
Cogn Neurodyn
June 2024
School of Biomedical Engineering, Shanghai Jiao Tong University, 800 Dong-Chuan Road, Shanghai, 200240 China.
Unlabelled: Two coordinated dynamic properties (adaptation and sensitization) are observed in retinal ganglion cells (RGCs) under the contrast stimulation. During sustained high-contrast period, adaptation decreases RGCs' responses while sensitization increases RGCs' responses. In mouse retina, adaptation and sensitization respectively show OFF- and ON-pathway-dominance.
View Article and Find Full Text PDFBiochem Pharmacol
December 2023
Department of Marine Life Science, Jeju National University, Jeju 63243, Republic of Korea. Electronic address:
Osteoporosis is a significant global health concern, linked to reduced bone density and an increased fracture risk, with effective treatments still lacking. This study explored the potential of gamma-aminobutyric acid (GABA) and its receptors as a novel approach to promote osteogenesis and address osteoporosis. GABA concentrations up to 10 mM were well-tolerated by MC3T3-E1 preosteoblast, stimulating osteoblast differentiation and mineralization in a concentration- and time-dependent manner.
View Article and Find Full Text PDFCurr Biol
October 2023
Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53705, USA; McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA; Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA. Electronic address:
Experience regulates synapse formation and function across sensory circuits. How inhibitory synapses in the mammalian retina are sculpted by visual cues remains unclear. By use of a sensory deprivation paradigm, we find that visual cues regulate maturation of two GABA synapse types (GABA and GABA receptor synapses), localized across the axon terminals of rod bipolar cells (RBCs)-second-order retinal neurons integral to the night-vision circuit.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!