A 100-kDa protein was found to be a major cell wall protein in Saccharomyces cerevisiae cells cultured without shaking, but was not present in cells cultured with shaking. The amino acid sequence of this protein was identical to the sequence of Tir1p/Srp1p. TIR1/SRP1 has previously been identified as a gene induced by glucose, cold shock or anaerobiosis and was believed to be a cell membrane protein but not a cell wall protein. However, we found that beta-1,3-glucanase solubilized Tir1p/Srp1p from the cell wall and the purified Tir1p/Srp1p reacted with antiserum to beta-1,6-glucan and contained glucose. These results suggest that Tir1p/Srp1p is a major structural cell wall protein in the static-cultured yeast cells and is bound to the cell wall through beta-1,6-glucan. TIR1/SRP1 mRNA was transcribed only in the static culture and its transcription was regulated by the ROX1 repressor.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1432-1033.1997.t01-1-00343.x | DOI Listing |
Proc Natl Acad Sci U S A
February 2025
Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63130.
bradyzoites reside in tissue cysts that undergo cycles of expansion, rupture, and release to foster chronic infection. The glycosylated cyst wall acts as a protective barrier, although the processes responsible for formation, remodeling, and turnover are not understood. Herein, we identify a noncanonical chitinase-like enzyme TgCLP1 that localizes to micronemes and is targeted to the cyst wall after secretion.
View Article and Find Full Text PDFArch Microbiol
January 2025
Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia.
Bacteriophages produce endolysins at the end of the lytic cycle, which are crucial for lysing the host cells and releasing virion progeny. This lytic feature allows endolysins to act as effective antimicrobial alternatives when applied exogenously. Staphylococcal endolysins typically possess a modular structure with one or two enzymatically active N-terminal domains (EADs) and a C-terminal cell wall binding domain (CBD).
View Article and Find Full Text PDFmBio
January 2025
Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA.
The 55-carbon isoprenoid, undecaprenyl-phosphate (UndP), is a universal carrier lipid that ferries most glycans and glycopolymers across the cytoplasmic membrane in bacteria. In addition to peptidoglycan precursors, UndP transports O-antigen, capsule, wall teichoic acids, and sugar modifications. How this shared but limited lipid is distributed among competing pathways is just beginning to be elucidated.
View Article and Find Full Text PDFmBio
January 2025
Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada.
Unlabelled: Peptidoglycan (PG) is an important bacterial macromolecule that confers cell shape and structural integrity, and is a key antibiotic target. Its synthesis and turnover are carefully coordinated with other cellular processes and pathways. Despite established connections between the biosynthesis of PG and the outer membrane, or PG and DNA replication, links between PG and folate metabolism remain comparatively unexplored.
View Article and Find Full Text PDFmBio
January 2025
University of Angers, Brest University, IRF, SFR ICAT, Angers, France.
The emerging fungal pathogen is known for its strong skin tropism and resilience against antifungal and disinfection treatment, posing a significant challenge for healthcare units. Although efforts to identify the effectors of its unique pathogenic behavior have been insightful, the role of the high-osmolarity glycerol (HOG) pathway in this context remains unexplored. The study by Shivarathri and co-workers (R.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!