Previous studies in conscious pigs have demonstrated that a sequence of ten 2-min coronary occlusion/2-min reperfusion cycles renders the heart relatively resistant to myocardial stunning 24 h later [late preconditioning (PC) against stunning] by an unknown mechanism. Since oxygen radicals contribute importantly to myocardial stunning and since antioxidant enzymes have been reported to be upregulated 24 h after PC in dogs and rabbits, we tested the hypothesis that late PC against stunning is related to an increase in endogenous antioxidant defenses. Chronically instrumented conscious pigs underwent a sequence of ten 2-min coronary occlusion/2-min reperfusion cycles (preconditioned group, n = 11) or received no intervention (control group, n = 5). Twenty-four hours later, pigs were killed and the myocardial levels of Mn superoxide dismutase (SOD), Cu-Zn SOD, catalase, glutathione (GSH) peroxidase, GSH reductase, GSH, GSH disulfide, alpha-tocopherol, and ascorbate were measured. There were no differences in any of the enzymatic or nonenzymatic antioxidants between the ischemic and nonischemic regions in the preconditioned group or between the control and the preconditioned group. Thus, when a marked protection against stunning was present (24 h after PC), no alteration in antioxidant defenses was observed. These results indicate that, in conscious pigs, late PC against myocardial stunning is not mediated by increased endogenous antioxidant defenses, thereby refuting one of the major current hypotheses regarding this phenomenon.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpheart.1997.273.4.H1651DOI Listing

Publication Analysis

Top Keywords

antioxidant defenses
16
conscious pigs
16
myocardial stunning
12
preconditioned group
12
stunning mediated
8
mediated increased
8
sequence ten
8
ten 2-min
8
2-min coronary
8
coronary occlusion/2-min
8

Similar Publications

Quinoa, rich in pharmacologically active ingredients, possesses the potential benefit in preventing cognitive impairments induced by hypoxia. In this study, the efficacy of quinoa ethanol extracts (QEE) consumption (200 and 500 mg/kg/d, respectively) against hypobaric hypoxia (HH)-induced cognitive deficits in mice was investigated. QEE significantly ameliorated hypoxic stress induced by HH, as evidenced by improvements in baseline indices and reductions in hypoxia-inducible factor 1α levels.

View Article and Find Full Text PDF

Recently, the potential role of vitamins in cancer therapy has attracted considerable research attention. However, the reported findings are inconsistent, with limited information on the biochemical and molecular interactions of different vitamins in various cancer cells. Importantly, the presence of vitamin receptors in tumor cells suggests that vitamins play a significant role in the molecular and biochemical interactions in cancers.

View Article and Find Full Text PDF

Background: The human gut microbiota has a critical role in several aspects of host homeostasis, such as immune development, metabolism, nutrition, and defense against pathogens during life. It can be sensitive to xenobiotics including drugs, diet, or even environmental pollutants, especially heavy metals (HMs). The findings of some previous studies are heterogeneous due to the inclusion of various types of study (human, and animal studies) and wide exposures (phthalate, bisphenol A, HMS, etc.

View Article and Find Full Text PDF

Upon exposure to salt stress, calcium signaling in plants activates various stress-responsive genes and proteins along with enhancement in antioxidant defense to eventually regulate the cellular homeostasis for reducing cytosolic sodium levels. The coordination among the calcium signaling molecules and transporters plays a crucial role in salinity tolerance. In the present study, twenty-one diverse indigenous rice genotypes were evaluated for salt tolerance during the early seedling stage, and out of that nine genotypes were further selected for physio-biochemical study.

View Article and Find Full Text PDF

The contamination of Chinese medicinal materials with cadmium (Cd) is a pressing global issue that poses significant risks to human health. The beneficial effects of selenium (Se) have been established in improving plant growth and reducing Cd accumulation in plant under Cd stress. This study employed soil cultivation experiments to investigate the remediation effects of exogenous Se (0, 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!