Hereditary 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3]-resistant rickets (HVDRR) is a rare autosomal recessive disorder resulting in target organ resistance to the active form of vitamin D [1,25-(OH)2D3]. Point mutations in the vitamin D receptor (VDR) gene have been identified in HVDRR. We investigated the molecular basis of HVDRR in a Brazilian family with two affected siblings. The propositus is a 12-yr-old boy born to first cousin parents who exhibited the classical pattern of the HVDRR, including early-onset rickets, total alopecia, convulsions, hypocalcemia, secondary hyperparathyroidism, and elevated 1,25-(OH)2D3 serum levels. His younger sister also developed clinical and biochemical features of HVDRR at 1 month of age and died at 4 yr of age. Genomic DNA was isolated from peripheral blood of the boy and from dried umbilical cord tissue of his affected sister. We amplified exons 2 and 3 of the VDR gene, which encode the zinc finger DNA-binding domain by PCR. Direct sequencing of the PCR products revealed a homozygous substitution of cytosine for thymine at nucleotide position 88 in exon 2 of the VDR gene in both affected siblings. This point mutation determined the substitution of a stop codon (TGA) for arginine (CGA) at amino acid position 30 at the first zinc finger of the DNA-binding domain of the VDR. This substitution generated a truncated receptor missing 397 residues. The parents and a normal sister were heterozygous for this mutation. In conclusion, we describe a novel nonsense mutation in the first zinc finger of the VDR that generated a severely truncated form of this receptor.

Download full-text PDF

Source
http://dx.doi.org/10.1210/jcem.82.11.4384DOI Listing

Publication Analysis

Top Keywords

zinc finger
16
vdr gene
12
novel nonsense
8
nonsense mutation
8
mutation zinc
8
vitamin receptor
8
hereditary 125-dihydroxyvitamin
8
finger dna-binding
8
dna-binding domain
8
hvdrr
5

Similar Publications

Synthesis and functional screening of novel inhibitors targeting the HDAC6 zinc finger ubiquitin-binding domain.

Eur J Med Chem

December 2024

SynBioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium. Electronic address:

Histone deacetylase 6 (HDAC6) is a promising target for treating neurodegenerative disorders, several cancer types and viral infections. Unique among HDACs, the HDAC6 isoform possesses a zinc finger ubiquitin-binding domain (UBD) crucial for managing misfolded protein aggregates and facilitating viral infection. HDAC6 binds aggregated polyubiquitinated proteins through its UBD, mediating their transport to the aggresome and subsequent removal via autophagy.

View Article and Find Full Text PDF

Polycystic kidney diseases (PKD) are genetic disorders which disrupt kidney architecture and function. Autosomal recessive PKD (ARPKD) is a rare form of PKD, caused by mutations in PKHD1, and clinically more severe than the more common autosomal dominant PKD (ADPKD). Prior studies have implicated Hedgehog (Hh) signaling in ADPKD, with increased levels of Hh components in experimental ADPKD and reduced cystogenesis following pharmacological Hh inhibition.

View Article and Find Full Text PDF

Microglia M1 polarization plays important role in the development of ischemic stroke (IS). This study explored the role of transcription factor 7 like 2 (TCF7L2) in regulating microglia M1 polarization during IS. TTC staining was used to determine the cerebral infarction, and Nissl staining was applied to examine neuronal injury.

View Article and Find Full Text PDF

Hepatopulmonary syndrome (HPS) is a severe lung injury caused by chronic liver disease, with limited understanding of the disease pathology. Exosomes are important mediators of intercellular communication that modulates various cellular functions by transferring a variety of intracellular components to target cells. Our recent studies have indicated that a new long noncoding RNA (lncRNA), PICALM-AU1, is mainly expressed in cholangiocytes, and is dramatically induced in the liver during HPS.

View Article and Find Full Text PDF

ZFAND6 is a zinc finger protein that interacts with TNF receptor-associated factor 2 (TRAF2) and polyubiquitin chains and has been linked to tumor necrosis factor (TNF) signaling. Here, we report a previously undescribed function of ZFAND6 in maintaining mitochondrial homeostasis by promoting mitophagy. Deletion of ZFAND6 in bone marrow-derived macrophages (BMDMs) upregulates reactive oxygen species (ROS) and the accumulation of damaged mitochondria due to impaired mitophagy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!