Urocortin is a recently identified neuropeptide of the CRF family in the mammalian brain, but its expression in human tissue has been little studied. In this study, we examined urocortin expression in human anterior pituitary gland and pituitary adenomas by RIA, high performance liquid chromatography, immunohistochemistry, messenger ribonucleic acid (mRNA) in situ hybridization, and reverse transcriptase-PCR. Immunoreactive urocortin concentrations in normal pituitary tissue extract were 103.25 +/- 39.05 ng/g wet wt (mean +/- SEM; n = 4), and their levels were all significantly higher than those in other portions of central nervous system of the same subjects. High performance liquid chromatography analysis of human pituitary extract demonstrated a single peak corresponding to that of the expected chromatographic mobility of synthetic human urocortin-(1-40). Urocortin-immunoreactive cells were detected in the anterior pituitary gland. Neither urocortin-immunoreactive nerve fibers nor cells were detected in the posterior lobe. Immunostaining in serial mirror tissue sections revealed that 76.55 +/- 3.06% of urocortin-immunoreactive cells expressed GH immunoreactivity, whereas 22.25 +/- 3.02% and less than 1% of urocortin-immunoreactive cells expressed PRL and ACTH, respectively. mRNA hybridization signals of urocortin were also detected in urocortin-immunopositive pituitary cells. The reverse transcriptase-PCR analysis demonstrated a 145-bp RNA band corresponding to that of the expected length of urocortin in all cases of normal pituitary glands examined (n = 3). We also immunostained urocortin in 52 cases of human anterior pituitary adenomas, including GH-producing adenomas (n = 14), ACTH-producing adenomas (n = 13), PRL-producing adenomas (n = 11), and nonfunctioning hormonally inactive adenomas (n = 14). No urocortin immunoreactivity was detected in these adenoma cells, except for one case of GH-producing adenoma and one case of nonfunctioning adenoma. We also performed mRNA in situ hybridization in 27 adenomas. No hybridization signals were detected in these adenomas, except in two cases. The results described above indicated that urocortin is synthesized in human anterior pituitary cells and may play an important role in biological features of normal pituitary gland, possibly as an autocrine or a paracrine regulator

Download full-text PDF

Source
http://dx.doi.org/10.1210/jcem.82.11.4371DOI Listing

Publication Analysis

Top Keywords

pituitary gland
16
anterior pituitary
16
expression human
12
pituitary
12
human anterior
12
normal pituitary
12
urocortin-immunoreactive cells
12
urocortin
9
urocortin expression
8
human pituitary
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!