In a comprehensive study, we examined the expression of the membrane and secretory mucins MUC1 and MUC3, respectively, in normal and neoplastic gastrointestinal and breast epithelia before and after specific alterations of their glycan structures by neuraminidase, alpha-fucosidase, or carbohydrate-specific periodate oxidation. MUC1 mRNA was also identified in normal colorectal tissues by in situ hybridization. The data revealed that normal colorectal epithelia express both MUC1 mRNA and protein, which were detectable after periodate oxidation with all tested MUC1-specific antibodies. During tumorigenesis in the colon, MUC1 became recognizable without periodate treatment concomitantly with highly dysplastic lesions and the malignant state. In the breast, in which MUC1 is detectable with most antibodies in normal epithelium as well as in carcinomas, staining could be enhanced by pretreatment with periodate and casually by enzyme treatments. MUC3 was detectable in normal and neoplastic colorectal tissues and was more intensely stained after periodate oxidation. It was absent in normal breast even after pretreatment but was expressed in seven of 20 breast carcinomas. Therefore, incomplete glycosylation, abnormal distribution, and ectopic expression of mucins are characteristics of malignancy. Periodate oxidation may be widely applicable to immunohistochemistry for examining changes in glycosylation and for detecting antigens masked by glycans.

Download full-text PDF

Source
http://dx.doi.org/10.1177/002215549704501111DOI Listing

Publication Analysis

Top Keywords

periodate oxidation
16
mucins muc1
8
muc1 muc3
8
gastrointestinal breast
8
breast epithelia
8
normal neoplastic
8
muc1 mrna
8
normal colorectal
8
colorectal tissues
8
normal
6

Similar Publications

A soybean protein isolate (SPI)-based hydrogel with controllable properties was prepared under mild conditions using a simple mixing method with dialdehyde sodium alginate (DSA) as an eco-friendly macromolecular crosslinker. DSA was successfully synthesized via periodate oxidation. Analysis of the structure of the SPI/DSA hydrogel indicated that a 3D network was formed between SPI and DSA through dynamic imine and hydrogen bonds.

View Article and Find Full Text PDF

Active surface area determines the activity of biochar in Fenton-like oxidation processes.

J Hazard Mater

January 2025

College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:

Biochar (BC) possesses diverse active sites (e.g., oxygen-containing groups OCGs, defects, and electronegative heteroatom) responsible for the catalytic reactions.

View Article and Find Full Text PDF

Oxidative degradation of sulfamethazine by manganese oxide supported biochar activated periodate: Effect and mechanism.

Ecotoxicol Environ Saf

January 2025

State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing, Jiangsu, 210042, China. Electronic address:

In this study, manganese oxide supported biochar (MBC) was used as a catalyst of periodate (PI) for the oxidative degradation of sulfonamide antibiotic sulfamethazine (SMZ). The degradation rate of 10 mg/L SMZ reached 99 % in 60 min in the MBC/PI system, and the optimal condition was pH 3.5, 0.

View Article and Find Full Text PDF

Singlet oxygen presenting a higher detoxification potential on enrofloxacin than sulfate and hydroxyl radicals.

J Hazard Mater

January 2025

School of Environmental Science and Engineering, Nanjing Tech University, Nanjing 211816, China. Electronic address:

With the aid of radical and non-radical reactive species (RS), advanced oxidation processes can efficiently degrade emerging organic contaminants including antibiotics but may generate toxic transformation products (TPs). However, the detoxification capacity of popular RS has not been well elucidated. This study compared the detoxification of enrofloxacin (ENR) with three RS-dominated systems: O, SO+OH, OH.

View Article and Find Full Text PDF

Integrating Chemoselective Labeling and Laser-Cleavable Mass Tagging for Determination of Sialic Acids in Glycoconjugates.

Anal Chem

January 2025

Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.

Sialic acids are the terminal units of glycans in glycoproteins or glycolipids. The determination of sialic acids in glycoconjugates is crucial since they regulate essential biological functions and have a significant nutritional value. To achieve a specific and high-throughput in situ determination of sialic acids in glycoconjugates, a laser-desorption/ionization mass spectrometry (LDI-MS)-based strategy is reported by integrating chemoselective labeling and laser-cleavable mass tagging.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!