AI Article Synopsis

  • Examined how B- and Z-DNA are distributed in dog lens fiber cells using histochemical methods.
  • The study found that the presence of anti-B-DNA and anti-Z-DNA antibodies declined significantly around 90 microns in nucleated fibers, indicating a notable transition.
  • This change correlates with a loss of alpha-crystallin and suggests a major reorganization in lens fiber cells' structure at the 90 micron zone, indicating DNA degradation in deeper fibers.

Article Abstract

We examined histochemically and immunohistochemically the distribution of B- and Z-DNA in the epithelium and terminally differentiating dog lens fiber cells. On the basis of anti-DNA antibody reactivity, qualitative and quantitative data on B- and Z-DNA in cells were determined. Anti-B-DNA immunoreactivity gradually declined throughout nucleated fibers, with a precipitous decrease at approximately 90 microns. Anti-Z-DNA antibody binding decreased with a sudden loss of immunoreactivity at approximately 90 microns. The pattern of anti-B- and Z-DNA staining correlates with the loss of alpha-crystallin immunoreactivity, the major lens crystallin, and decreased eosin staining of proteins. Germinative zone cell nuclei showed the highest DNA probe binding values, followed by the superficial fibers, central zone, middle fibers, and deep fibers. The presence of single-stranded (ss)DNA in deeper fibers was detected by anti-ss-DNA antibodies. This is indicative of DNA degradation. These observations suggest that a dramatic reorganization of lens fiber cells' supramolecular order occurs at approximately 90 microns, the phase transition zone.

Download full-text PDF

Source
http://dx.doi.org/10.1177/002215549704501108DOI Listing

Publication Analysis

Top Keywords

terminally differentiating
8
fiber cells
8
lens fiber
8
fibers
5
localization b-dna
4
z-dna
4
b-dna z-dna
4
z-dna terminally
4
differentiating fiber
4
cells adult
4

Similar Publications

is one of the three most frequently mutated genes in age-related clonal hematopoiesis (CH), alongside and (. CH can progress to myeloid malignancies including chronic monomyelocytic leukemia (CMML) and is also strongly associated with inflammatory cardiovascular disease and all-cause mortality in humans. DNMT3A and TET2 regulate DNA methylation and demethylation pathways, respectively, and loss-of-function mutations in these genes reduce DNA methylation in heterochromatin, allowing derepression of silenced elements in heterochromatin.

View Article and Find Full Text PDF

Background: Tau is a neuronal microtubule associated protein whose interactions with microtubules are regulated by phosphorylation. Tau has numerous putative phosphorylation sites, but it is unclear which combinations of Tau phosphorylation co-occur in the normal state and precisely how they impact Tau function. Adding further complexity, there are six major Tau isoforms arising from alternative splicing.

View Article and Find Full Text PDF

Decoupling economic growth and carbon emissions is essential to a sustainable high-quality development. As a small unit of the engine of development, more research has begun to focus on city-level issues. In order to fill the gaps in the decoupling research at the city level covering the whole nationwide, this paper applied the bottom-up method to calculate 282 cities' carbon emissions according to China's city-level panel data of terminal energy consumption, and combined Tapio decoupling with LMDI decomposition model to analyze cities' decoupling status and its driving factors.

View Article and Find Full Text PDF

Background: The extracellular amyloid plaques, one of the pathological hallmarks of Alzheimers Disease (AD), are frequently also observed in the cortex of cognitively unimpaired subjects or as co-pathology in other neurodegenerative diseases. Progressive deposition of fibrillar amyloid-β (Aβ) as amyloid plaques for two decades prior disease onset leads to extensive isomerization of Aβ N-terminus. Quantifying the extent of isomerized Aβ can be provide insight into the different stages of amyloidosis in the brain.

View Article and Find Full Text PDF

Background: In neurodegenerative disease such as Alzheimer's disease and stroke, the brain transitions to pro-inflammatory profile, where microglia and T-cells in the brain have increase inflammatory profiles, along with increased Kv1.3 potassium channel abundance. Pharmacological blockade of Kv1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!