The yeast OGG1 gene was recently cloned and shown to encode a protein that possesses N-glycosylase/AP lyase activities for the repair of oxidatively damaged DNA at sites of 7,8-dihydro-8-oxoguanine (8-oxoguanine). Similar activities have been identified for Escherichia coli formamidopyrimidine-DNA glycosylase (Fpg) and Drosophila ribosomal protein S3. Both Fpg and S3 also contain a deoxyribophosphodiesterase (dRpase) activity that removes 2-deoxyribose-5-phosphate at an incised 5' apurinic/apyrimidinic (AP) sites via a beta-elimination reaction. Drosophila S3 also has an additional activity that removes trans-4-hydroxy-2-pentenal-5-phosphate at a 3' incised AP site by a Mg2+-dependent hydrolytic mechanism. In view of the substrate similarities between Ogg1, Fpg and S3 at the level of base excision repair, we examined whether Ogg1 also contains dRpase activities. A glutathione S-transferase fusion protein of Ogg1 was purified and subsequently found to efficiently remove sugar-phosphate residues at incised 5' AP sites. Activity was also detected for the Mg2+-dependent removal of trans -4-hydroxy-2-pentenal-5-phosphate at 3' incised AP sites and from intact AP sites. Previous studies have shown that DNA repair proteins that possess AP lyase activity leave an inefficient DNA terminus for subsequent DNA synthesis steps associated with base excision repair. However, the results presented here suggest that in the presence of MgCl2, Ogg1 can efficiently process 8-oxoguanine so as to leave a one nucleotide gap that can be readily filled in by a DNA polymerase, and importantly, does not therefore require additional enzymes to process trans -4-hydroxy-2-pentenal-5-phosphate left at a 3' terminus created by a beta-elimination catalyst.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC147074PMC
http://dx.doi.org/10.1093/nar/25.22.4557DOI Listing

Publication Analysis

Top Keywords

deoxyribophosphodiesterase drpase
8
drpase activity
8
activity removes
8
base excision
8
excision repair
8
incised sites
8
trans -4-hydroxy-2-pentenal-5-phosphate
8
dna
7
ogg1
6
activity
5

Similar Publications

The mechanism of base excision repair in Chlamydiophila pneumoniae.

DNA Repair (Amst)

November 2005

College of Life Sciences and Technology, Shanghai Jiaotong University, No. 1954 Hua-Shan Road, Shanghai 200030, China.

Repair of damaged DNA is of great importance in maintaining genome integrity, and there are several pathways for repair of damaged DNA in almost all organisms. Base excision repair (BER) is a main process for repairing DNA carrying slightly damaged bases. Several proteins are required for BER; these include DNA glycosylases, AP endonuclease, DNA polymerase, and DNA ligase.

View Article and Find Full Text PDF

Sensing DNA damage by PARP-like fingers.

Nucleic Acids Res

December 2003

Department of Biochemistry and Molecular Biology, University of Parma, Parco Area delle Scienze 23/A, I-43100 Parma, Italy.

PARP-like zinc fingers are protein modules, initially described as nick-sensors of poly(ADP-ribosyl)-polymerases (PARPs), which are found at the N-terminus of different DNA repair enzymes. I chose to study the role of PARP-like fingers in AtZDP, a 3' DNA phosphoesterase, which is the only known enzyme provided with three such finger domains. Here I show that PARP-like fingers can maintain AtZDP onto damaged DNA sites without interfering with its DNA end repair functions.

View Article and Find Full Text PDF

The rate, extent, and DNA synthesis patch size of base excision repair (BER) were measured using Escherichia coli GM31 cell-free extracts and a pGEM (form I) DNA substrate containing a site-specific uracil or ethenocytosine target. The rate of complete BER was stimulated (approximately 3-fold) by adding exogenous E. coli DNA ligase to the cell-free extract, whereas addition of E.

View Article and Find Full Text PDF

Counteracting spontaneous transformation via overexpression of rate-limiting DNA base excision repair enzymes.

Carcinogenesis

September 2001

DNA Repair Unit, Mutagenesis Laboratory, Istituto Nazionale Ricerca Cancro, Largo Rosanna Benzi no. 10, 16132 Genova, Italy.

DNA damage of endogenous origin may significantly contribute to human cancer. A major pathway involved in DNA repair of endogenous damage is DNA base excision repair (BER). BER is rather efficient in human cells but a certain amount of endogenous damage inevitably escapes mending and likely contributes to human carcinogenesis.

View Article and Find Full Text PDF

In mammalian cells the majority of altered bases in DNA are processed through a single-nucleotide patch base excision repair mechanism. Base excision repair is initiated by a DNA glycosylase that removes a damaged base and generates an abasic site (AP site). This AP site is further processed by an AP endonuclease activity that incises the phosphodiester bond adjacent to the AP site and generates a strand break containing 3'-OH and 5'-sugar phosphate ends.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!