At rest and during exercise, chronic hyperglycemia, high free fatty acid (FFA) oxidation, and insulin deficiency in diabetes are well known to impair glucose clearance (metabolic clearance rate [MCR]). The effect of acute restoration of glycemia per se on MCR has been less well characterized. We therefore studied normal and alloxan-diabetic dogs both at rest and during exercise, as diabetic hyperglycemic or after acutely induced euglycemia (<160 min) generated by infusion of either insulin or phlorizin. Glucose uptake was similar under hyperglycemic and normoglycemic conditions both at rest and during exercise, indicating a precise balance between the mass effect of glucose and decreased MCR. Rest and exercise MCR was fourfold lower under conditions of hyperglycemia, but insulin-independent restoration of euglycemia improved basal MCR threefold and normalized MCR during exercise. High FFA turnover did not affect glucose uptake but was correlated with plasma lactate concentrations (r = 0.72, P < 0.001), suggesting that muscle fuel requirements are controlled by glucose oxidation and not uptake. We conclude that in alloxan-diabetic dogs, the impaired MCR may be an adaptive phenomenon because correction of hyperglycemia corrects MCR despite partial insulin deficiency and high FFA turnover. We speculate that constant glucose uptake despite hyperglycemia in diabetes may protect the muscle from excessive exposure to glucose.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2337/diab.46.11.1805 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!