Molecular basis of antimicrobial resistance in non-typable Haemophilus influenzae.

Microbiologia

Laboratori de Microbiologia, Institut Universitari de Salut Pública, Universitat de Barcelona, Spain.

Published: September 1997

Strains of the facultative anaerobe Haemophilus influenzae, both type b and non typable strains, are frequently multiresistant. The measurement of the antibiotic permeability of Haemophilus influenzae outer membrane (OM) shows that antibiotics can cross through the OM easily. Thus, enzymatic activity or efflux pumps could be responsible for multiresistance. An efflux system closely related to AcrAB of Escherichia coli is present in Haemophilus influenzae. However, their role in multiresistance seems irrelevant. Classical mechanisms such as plasmid exchange seems to be playing a major role in the multidrug resistance in Haemophilus influenzae.

Download full-text PDF

Source

Publication Analysis

Top Keywords

haemophilus influenzae
20
haemophilus
5
influenzae
5
molecular basis
4
basis antimicrobial
4
antimicrobial resistance
4
resistance non-typable
4
non-typable haemophilus
4
influenzae strains
4
strains facultative
4

Similar Publications

Based on the inhibitory potencies from earlier reported tetrazole thioether analogs, we now describe the synthesis and inhibition of pyrazole-based inhibitors of -succinyl-l,l-2,6-diaminopimelic acid desuccinylase (DapE) from (DapE). The most potent pyrazole analog bears an aminopyridine amide with an IC of 17.9 ± 8.

View Article and Find Full Text PDF

Background: The COVID-19 pandemic has significantly altered the etiological spectrum and epidemiological characteristics of pediatric respiratory diseases, and a profound understanding of these changes is crucial for guiding clinical treatment. The purpose of this study is to analyze the etiological patterns and epidemiological features of pathogens in bronchoalveolar lavage fluid (BALF) from children with pediatric lower respiratory tract infections (LRTIs) after the COVID-19 pandemic, with the aim of providing effective therapeutic evidence for clinical practice.

Methods: This study enrolled pediatric patients diagnosed with LRTIs who were treated and underwent BALF pathogen detection at our hospital from June 1, 2023, to June 1, 2024.

View Article and Find Full Text PDF

: Acute otitis media (AOM) is a common pediatric infection worldwide and is the primary basis for pediatric primary care visits and antibiotic prescriptions in children. Current licensed vaccines have been incompletely ineffective at reducing the global burden of AOM, underscoring a major unmet medical need. The complex etiology of AOM presents additional challenges for vaccine development, as it can stem from multiple bacterial species including , , and .

View Article and Find Full Text PDF

IgA1 protease is one of the virulence factors of , and other pathogens causing bacterial meningitis. The aim of this research is to create recombinant proteins based on fragments of the mature IgA1 protease A-P from serogroup B strain H44/76. These proteins are potential components of an antimeningococcal vaccine for protection against infections caused by pathogenic strains of and other bacteria producing serine-type IgA1 proteases.

View Article and Find Full Text PDF

: The development of a five-in-one vaccine microneedle patch (five-in-one MN patch) aims to address challenges in administering vaccines against Diphtheria (DT), Tetanus (TT), Pertussis (wP), Hepatitis B (HBsAg), and type b (Hib). Combining multiple vaccines into a single patch offers a novel solution to improve vaccine accessibility, stability, and delivery efficiency, particularly in resource-limited settings. : The five-in-one MN patch consists of four distinct microneedle arrays: DT and TT vaccines are coated together on one array, while wP, HepB, and Hib vaccines are coated separately on individual arrays.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!