The response of peripheral neutrophils was studied in 16 patients with allergic asthma after challenge with birch/grass pollen allergen, in order to identify inflammatory markers associated with only the early asthmatic reaction and those associated with both early and late asthmatic reactions. The allergen challenge proceeded until the patients had an early asthmatic reaction with 100% increase in specific airway resistance. Bronchoconstriction after allergen challenge was monitored hourly over 9 h and finally after 18 h, by measurement of the forced expiratory volume in 1 s. Seven patients had a late reaction, defined as a decrease in forced expiratory volume in 1 s of more than 15%. Blood samples were taken before and 18 h after challenge. After allergen challenge (18 h) the blood concentration of neutrophils in patients with a late asthmatic reaction was 1.4 times higher than before challenge and there was a tendency for increased Fc gamma receptor-mediated chemiluminescence. Lewis X-antigen (CD 15), which is associated with endothelial adhesion and extravasation, significantly decreased at the same time. Neutrophils were incubated with the tetrapeptide arginine-glycine-aspartate-serine before and 18 h after allergen challenge. Both patient groups showed an increased Fc gamma receptor-mediated chemiluminescence and a decreased Fc gamma receptor membrane expression following allergen challenge, suggesting a preactivation. In conclusion, patients with a dual asthmatic reaction show a sustained primed inflammatory response and primed neutrophils compared with patients with only an early reaction when measured after the decline of clinical symptoms provoked by allergen challenge.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF02912455 | DOI Listing |
Front Immunol
January 2025
Department of Pathology, Microbiology & Immunology, New York Medical College, Valhalla, NY, United States.
Rationale: Approximately 32 million people in the United States suffer from food allergies. Some food groups, such as legumes - peanuts, tree nuts, fish, and shellfish, have a high risk of cross-reactivity. However, the murine model of multiple food group cross-reactivity is limited.
View Article and Find Full Text PDFAnn Allergy Asthma Immunol
January 2025
Intrommune Therapeutics, Inc., New York.
Background: Oral Mucosal Immunotherapy (OMIT) uses a specifically formulated toothpaste to deliver allergenic proteins to immunologically active areas of the oral cavity. This represents a new delivery mechanism with several features designed to improve food allergy desensitization. OMIT presents advantages over other approaches to allergy immunotherapy due to its targeted delivery and simplified administration.
View Article and Find Full Text PDFFood Sci Anim Resour
January 2025
Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul 05006, Korea.
Cell-based meat (CBM) technology is a highly promising alternative to traditional animal agriculture, with considerable advantages in terms of sustainability, animal welfare, and food security. Nonetheless, CBM's successful commercialization is dependent on efficiently dealing with several critical concerns, including ensuring biological, chemical, and nutritional safety as well as navigating the global regulatory framework. To ensure CBM's biological safety, detecting and mitigating any potential hazards introduced during the manufacturing process is crucial.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biology, Bahir Dar University, P.O.Box 79, Bahir Dar, Ethiopia.
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has imposed substantial challenges on our society due to the COVID-19 pandemic. This virus relies heavily on its surface glycoprotein (S-glycoprotein) to facilitate attachment, fusion, and entry into host cells. While the nucleoprotein (N) in the ribonucleoprotein core binds to the viral RNA genome.
View Article and Find Full Text PDFJ Asthma Allergy
January 2025
Amgen Inc., Thousand Oaks, CA, USA.
Airway inflammation, a hallmark feature of asthma, drives many canonical features of the disease, including airflow limitation, mucus plugging, airway remodeling, and hyperresponsiveness. The T2 inflammatory paradigm is firmly established as the dominant mechanism of asthma pathogenesis, largely due to the success of inhaled corticosteroids and biologic therapies targeting components of the T2 pathway, including IL-4, IL-5, IL-13, and thymic stromal lymphopoietin (TSLP). However, up to 30% of patients may lack signatures of meaningful T2 inflammation (ie, T2 low).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!