Acute treatment with one large dose of ethanol, which mimics binge drinking, causes marginal fatty liver and decreases survival significantly after liver transplantation in rats, yet mechanisms remain unclear. Therefore, we evaluated the possible role of free radicals in primary nonfunction caused by acute ethanol. Female donor rats were administered ethanol (5 g/kg orally) 20 hr before explantation, and grafts were stored in UW cold storage solution for 24-42 hr before implantation. Free radicals were trapped with alpha-(4-pyridyl 1-oxide)-N-tert-butylnitrone after transplantation, and adducts were detected using electron spin resonance spectrometry. Ethanol increased a carbon-centered radical adduct in bile approximately 2-fold and elevated serum lipid hydroperoxides approximately 4-fold. Ethanol also increased transaminase release 3.7-fold and decreased bile production by 55%. Catechin, a free radical scavenger, minimized the increase in free radicals, blunted transaminase release, and elevated bile production significantly, indicating that free radical production plays an important role in ethanol-induced fatty graft injury. GdCl3 (20 mg/kg intravenously), a selective Kupffer cell toxicant, largely blocked the increases in free radical and lipid hydroperoxide production caused by ethanol. In addition, ethanol nearly doubled white blood cell adhesion after transplantation, leading to increased superoxide production in fatty grafts. GdCl3 largely blocked leukocyte adhesion as well as superoxide production. Allopurinol, an inhibitor of xanthine oxidase, also diminished free radical production, blunted transaminase release, and improved bile production in fatty grafts significantly. Taken together, we conclude that free radical formation increases in ethanol-induced fatty grafts due mainly to activation of Kupffer cells and increased adhesion of white blood cells. Antioxidants can effectively block free radical formation and minimize injury to marginal fatty grafts caused by binge drinking.

Download full-text PDF

Source
http://dx.doi.org/10.1124/mol.52.5.912DOI Listing

Publication Analysis

Top Keywords

free radical
24
fatty grafts
20
free radicals
16
marginal fatty
12
transaminase release
12
bile production
12
free
9
role free
8
radicals primary
8
primary nonfunction
8

Similar Publications

Plasma is considered as the fourth state of matter, and atmospheric cold plasma (cold plasma) is a type of plasma consisting of ionized gases containing excited species of atoms, molecules, ions, and free radicals at near room temperature. Cold plasma is generated by applying high voltage to gases, causing it to ionize thus forming plasma. Although cold plasma has been found to break seed dormancy and improve germination rate, only a few studies have explored the potential of cold plasma against insect herbivory.

View Article and Find Full Text PDF

Primary Renal Lymphoma: A Single-Center Study of 14 Cases.

Clin Genitourin Cancer

January 2025

Department of Pathology, The First Medical Centre, Chinese PLA General Hospital, Beijing, China. Electronic address:

Objective: To investigate the clinical characteristics, pathology, imaging features, and prognosis of primary renal lymphoma (PRL), a rare malignancy.

Patients And Method: We conducted a retrospective review of 14 PRL cases diagnosed between January 2009 and January 2022, with follow-up data collected from medical records.

Results: The study included 14 patients (7 males, 7 females), with a mean age of 60.

View Article and Find Full Text PDF

Both photothermal therapy (PTT) and chemodynamic therapy (CDT) are designed to focus their antitumor effect on only the tumor site, thereby minimizing unwanted severe damage to healthy tissue outside the tumor. However, each monotherapy is limited in achieving complete tumor eradication, resulting in tumor recurrence. The combination of multiple therapies may help to overcome the limitations of single therapy, improve the chances of complete tumor eradication, and reduce the risk of recurrence.

View Article and Find Full Text PDF

Background: Myocardial ischemia-reperfusion injury (MIRI) is an important complication in the treatment of heart failure, and its treatment has not made satisfactory progress. Nitroxyl (HNO) showed protective effects on the heart failure, however, the effect and underlying mechanism of HNO on MIRI remain largely unclear.

Methods: MIRI model in this study was established to induce H9C2 cell injury through hypoxia/reoxygenation (H/R) in vitro.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) produced by NADPH oxidase promote contraction of peripheral arteries, which is especially pronounced in early postnatal period in comparison to adulthood, but the mechanisms of such vasomotor influence are poorly understood. We tested the hypothesis that Rho-kinase and protein kinase C (PKC) mediate procontractile influence of NADPH oxidase derived ROS in peripheral artery of early postnatal rats. In addition, we evaluated the involvement Src-kinase and L-type voltage-gated Ca channels (LTCC) into procontractile influence of ROS, produced by NADPH oxidase, because of their known interplay with Rho-kinase and PKC pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!