We studied the effect of the coffee diterpene alcohols, cafestol and kahweol, on cholesterol metabolism in HepG2 cells. Uptake of 125I-tyramine cellobiose-labeled LDL was decreased by 15% to 20% (P < .05) after 18 hours of preincubation with cafestol (20 micrograms/mL), whereas 25-hydroxycholesterol reduced uptake by 55% to 65% (P < .05). Degradation of LDL in the presence of cafestol was decreased by 20% to 30% (P < .05) under the same conditions. The effect of cafestol (20 micrograms/mL) on uptake and degradation of LDL was greatest (35% to 40%, P < .05) after 6 and 10 hours of preincubation, respectively. Furthermore, the effect of cafestol was also dependent on its concentration, and a significant decrease in the LDL uptake (19%) was observed at 10 micrograms/mL (P < .05). Specific binding of LDL was reduced by 17% (P < .05) and 60% (P < .05) after preincubation with cafestol (20 micrograms/mL) and 25-hydroxycholesterol (5 micrograms/mL) for 6 hours, respectively, compared with control cells. Analysis of LDL binding showed that cafestol reduced the number of binding sites for LDL on the cell surface (capacity) by 35% (P < .05). In contrast, no significant effect on the level of mRNA for the LDL receptor was observed after incubation with cafestol, whereas 25-hydroxycholesterol reduced the mRNA level for the LDL receptor by 40% to 50% (P < .05). A fusion gene construct consisting of a synthetic sterol regulatory element-1 (SRE-1) promoter for the human LDL receptor coupled to the reporter gene for chloramphenicol acetyltransferase (CAT) was transfected into HepG2 cells. No change was observed in CAT activity in SRE-1-transfected cells after incubation with cafestol, whereas 25-hydroxycholesterol reduced CAT activity by 30% to 40% (P < .05). Incorporation of [14C]acetate into unesterified cholesterol and 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity were unaffected in cells incubated with cafestol as well as the cafestol-kahweol mixture compared with control cells. Moreover, cafestol and the cafestol-kahweol mixture did not promote increased incorporation of radiolabeled [14C]oleic acid into cholesteryl esters after short-term incubation compared with control cells. On the other hand, 25-hydroxycholesterol caused a 70% to 90% reduction of cholesterol synthesis (P < .05) and HMG-CoA reductase activity (P < .05), decreased HMG-CoA reductase mRNA level by 70% to 80% (P < .05), and promoted a twofold increase in cholesterol esterification (P < .05). Finally, no effect of the coffee diterpenes on bile acid formation was observed. These results suggest that cafestol (and kahweol) may reduce the activity of hepatic LDL receptors and thereby cause extracellular accumulation of LDL.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/01.atv.17.10.2140 | DOI Listing |
Molecules
December 2024
Aroma Analysis Laboratory (LAROMA), Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil.
Coffee is one of the most important beverages in the world and is produced from spp. beans. Diterpenes with -kaurane backbones have been described in this genus, and substances such as cafestol and kahweol have been widely investigated, along with their derivatives and biological properties.
View Article and Find Full Text PDFJ Agric Food Chem
December 2024
Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-909, Brasil.
Cafestol is an -kaurene skeleton diterpene that is present in coffee beans and brews. Although several biological activities have been described in the literature for cafestol, such as hypercholesterolemic, anti-inflammatory, anticerous, and antidiabetic effects, its metabolism within the human body remains poorly understood. Therefore, this study aimed to quantify cafestol in boiled coffee brew, assess its bioaccessibility using a static digestion model, and investigate the metabolites formed during the digestion process using liquid chromatography coupled to high-resolution mass spectrometry.
View Article and Find Full Text PDFInt J Mol Sci
October 2024
Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznan, Poland.
Liver inflammation is frequently linked to oxidative stress and dysregulation of bile acid and fatty acid metabolism. This review focuses on the farnesoid X receptor (FXR), a critical regulator of bile acid homeostasis, and its interaction with the nuclear factor erythroid 2-related factor 2 (Nrf2), a key modulator of cellular defense against oxidative stress. The review explores the interplay between FXR and Nrf2 in liver inflammatory diseases, highlighting the potential therapeutic effects of natural FXR agonists.
View Article and Find Full Text PDFNutrients
September 2024
Steno Diabetes Center Aarhus, Aarhus University Hospital, 8200 Aarhus, Denmark.
: Coffee consumption is inversely associated with type 2 diabetes. Cafestol, a bioactive compound in coffee, has demonstrated glucose-lowering and insulin-secretory properties in cell and animal studies. The acute effects of cafestol on glucose metabolism in humans have only been briefly investigated, and longer-term effects have not been explored.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
Institute of Hypertension, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China. Electronic address:
Ethnopharmacological Relevance: Qian Yang Yu Yin Granule (QYYYG), a traditional Chinese poly-herbal formulation, has been validated in clinical trials to mitigate cardiac remodeling (CR), and cardiac damage in patients with hypertension. However, the specific mechanism remains unclear.
Aim Of The Study: This study explored the potential effects and potential mechanisms of QYYYG on hypertensive CR by combining various experimental approaches.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!