Electron energy-loss spectroscopic imaging (ESI) yields high-resolution, element-sensitive images. However, ESI suffers from difficulties in distinguishing element-specific and background contributions. New methods have therefore been introduced which use grey-level measurements in micrographic images for a more accurate detection of element distributions. A videodensitometric method allowed the detection of low phosphorus levels in axoplasmic neurofilaments of squid giant axons. Here we further verify these results by investigating the relationship of videodensitometry and electron energy-loss spectroscopy (EELS), particularly considering the peculiarities of these methods in terms of automatic background correction and representation of the results. Six biological specimens and two nonbiological specimens were examined both by EELS and by videodensitometry. In all cases comparable results were obtained. The overlapping PL2,3 and SL2,3 ionization edges could clearly be recognized individually by both methods, and controls showed that mass density variations within the specimens did not impair elemental analysis. Additional evidence supporting the detection of phosphorylation sites in squid neurofilaments was obtained in both EELS and videodensitometric measurements of neurofilament-enriched pellets and of aggregated axoplasmic particles. Thus, video-densitometry appears to be a useful tool for an improved exploration of the full imaging capabilities of energy filtering electron microscopy.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1365-2818.1997.2310791.xDOI Listing

Publication Analysis

Top Keywords

electron energy-loss
8
videodensitometric analysis
4
electron
4
analysis electron
4
electron spectroscopic
4
spectroscopic micrographs--a
4
micrographs--a tool
4
detection
4
tool detection
4
detection biologically
4

Similar Publications

Gold Nanorods Decorated by Conjugated Microporous Polymers for Infrared Responsive Cytostatic Drug Delivery.

Langmuir

January 2025

Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, 01069 Dresden, Germany.

Near-infrared (NIR) controlled drug delivery systems have drawn a lot of attention throughout the past few decades due to the deep penetration depth and comparatively minor side effects of the stimulus. In this study, we introduce an innovative approach for gastric cancer treatment by combining photothermal infrared-sensitive gold nanorods (AuNRs) with a conjugated microporous polymer (CMP) to create a drug delivery system tailored for transporting the cytostatic drug 5-fluorouracil (5-FU). CMPs are fully conjugated networks with high internal surface areas that can be precisely tailored to the adsorption and transport of active compounds through the right choice of chemical functionalities.

View Article and Find Full Text PDF

Introduction: Coronavirus disease 2019 (COVID-19) is characterized by fever, fatigue, dry cough, dyspnea, mild pneumonia and acute lung injury (ALI), which can lead to acute respiratory distress syndrome (ARDS), and SARS-CoV-2 can accelerate tumor progression. However, the molecular mechanism for the increased mortality in cancer patients infected with COVID-19 is unclear.

Methods: Colony formation and wound healing assays were performed on Huh-7 cells cocultured with syncytia.

View Article and Find Full Text PDF

Magnetoliposomes containing magnetite, soy lecithin, stigmasterol, and beta-sitosterol of the mean size minor than 160 nm were obtained by a scalable and green process using autoclave and sonication without organic solvents. The formation, size of the liposome, linkage, and encapsulation of the magnetite were evaluated by Cryo-TEM. The stability of magnetoliposomes after storage for 6 months at 4 °C was improved by liposome size, the ability of soy lecithin to preserve the magnetite phase against oxidation, pH, polydispersity index, and zeta potential.

View Article and Find Full Text PDF

In this research, the effect of different plasticizers with different amounts on the properties of monolithic alumina-based refractories has been investigated. All samples were fired at 1100 °C and 1550 °C. In order to evaluate the desired properties, first the rheological properties of the samples were examined, and then for further investigations, loss on ignition (LOI), percentage of permanent linear changes (PLC), apparent porosity (AP), bulk density (BD) and cold crushing strength (CCS) tests were used.

View Article and Find Full Text PDF

First-principles study of structural, elastic, electronic, transport properties, and dielectric breakdown of CsTe photocathode.

Sci Rep

January 2025

Accelerator Operations and Technology Division, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM, 87545, USA.

The pursuit to operate photocathodes at high accelerating gradients to increase brightness of electron beams is gaining interests within the accelerator community, particularly for applications such as free electron lasers (FEL) and compact accelerators. Cesium telluride (CsTe) is a widely used photocathode material and it is presumed to offer resilience to higher gradients because of its wider band gap compared to other semiconductors. Despite its advantages, crucial material properties of CsTe remain largely unknown both in theory and experiments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!