We report that the Streptomyces species S. lividans and S. coelicolor, morphologically complex gram-positive soil bacteria, contain a developmentally regulated endoribonuclease activity (here named RNase ES) that functionally and immunologically resembles Escherichia coli RNase E. In Streptomyces cells, RNA I - the antisense repressor of replication of ColE1-type plasmids - is cleaved at sites attacked by RNase E. A Mg2+-dependent endonuclease that produces RNase E-like cleavages in RNA I and 9S ribosomal RNA was identified in S. lividans cell extracts. A Streptomyces peptide migrating at 70kDa in SDS/polyacrylamide gels binds to RNase E substrates and reacts with three separate anti-RNase E monoclonal antibodies; the endonucleolytic cleavage activity co-purified with the immunoreactive 70 kDa peptide. We show that RNase ES activity is regulated during the Streptomyces life cycle: activity increased as cells progressed from exponential growth to stationary phase in liquid culture, or from mycelial growth to sporulation on solid media. While mutations that interfere with S. coelicolor development late in its life cycle did not prevent this developmentally associated increase in RNase ES activity, the increase was blocked by a mutation (bldA) that interferes early with both morphological and physiological differentiation.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1365-2958.1997.5311904.xDOI Listing

Publication Analysis

Top Keywords

developmentally regulated
8
regulated streptomyces
8
escherichia coli
8
rnase activity
8
life cycle
8
rnase
7
streptomyces
5
activity
5
streptomyces endoribonuclease
4
endoribonuclease resembles
4

Similar Publications

Fluorescent biosensors offer a powerful tool for tracking and quantifying protein activity in living systems with high temporospatial resolution. However, the expression of genetically encoded fluorescent proteins can interfere with endogenous signaling pathways, potentially leading to developmental and physiological abnormalities. The EKAREV-NLS mouse model, which carries a FRET-based biosensor for monitoring extracellular signal-regulated kinase (ERK) activity, has been widely utilized both in vivo and in vitro across various cell types and organs.

View Article and Find Full Text PDF

Risk-taking is a concerning yet prevalent issue during adolescence and can be life-threatening. Examining its etiological sources and evolving pathways helps inform strategies to mitigate adolescents' risk-taking behavior. Studies have found that unfavorable environmental factors, such as adverse childhood experiences (ACEs), are associated with momentary levels of risk-taking in adolescents, but little is known about whether ACEs shape the developmental trajectory of risk-taking.

View Article and Find Full Text PDF

Transient chemical-mediated epigenetic modulation confers unrestricted lineage potential on human primed pluripotent stem cells.

Sci China Life Sci

January 2025

Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Peking University Health Science Center, Peking University, Beijing, 100191, China.

Human primed pluripotent stem cells are capable of generating all the embryonic lineages. However, their extraembryonic trophectoderm potentials are limited. It remains unclear how to expand their developmental potential to trophectoderm lineages.

View Article and Find Full Text PDF

Mediator25 (MED25) has been ascribed as a signal-processing and -integrating center that controls jasmonate (JA)-induced and MYC2-dependent transcriptional output. A better understanding of the regulation of MED25 stability will undoubtedly advance our knowledge of the precise regulation of JA signaling-related transcriptional output. Here, we report that Arabidopsis MED16 activates JA-responsive gene expression by promoting MED25 stability.

View Article and Find Full Text PDF

Multiplexed transcriptomic analyzes of the plant embryonic hourglass.

Nat Commun

January 2025

School of Integrative Plant Science, Plant Biology Section, Cornell University, Ithaca, NY, USA.

Zoologists have adduced morphological convergence among embryonic stages of closely related taxa, which has been called the phylotypic stage of embryogenesis. Transcriptomic analyzes reveal an hourglass pattern of gene expression during plant and animal embryogenesis, characterized by the accumulation of evolutionarily older and conserved transcripts during mid-embryogenesis, whereas younger less-conserved transcripts predominate at earlier and later embryonic stages. In contrast, comparisons of embryonic gene expression among different animal phyla describe an inverse hourglass pattern, where expression is correlated during early and late stages but not during mid-embryo development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!