Aberrant proliferation is an early-occurring intermediate event in carcinogenesis whose inhibition may represent preventive intervention. Indole-3-carbinol (I3C), a glucosinolate metabolite from cruciferous vegetables, inhibits organ site carcinogenesis in rodent models. Clinically relevant biochemical and cellular mechanisms for the anticarcinogenic effects of I3C, however, remain unclear. Experiments were conducted on reduction mammoplasty derived 184-B5 cells initiated with chemical carcinogen (184-B5/BP) or with oncogene (184-B5/HER), and on mammary-carcinoma-derived MDA-MD-231 cells to examine whether (i) I3C inhibits aberrant proliferation in initiated and transformed cells, and (ii) inhibition of aberrant proliferation is associated with altered cell-cycle progression, estradiol (E2) metabolism, and apoptosis. Aberrant proliferation in 184-B5/BP, 184-B5/HER, and MDA-MB-231 cells was evident by a 55%-67% decrease in the ratio of quiescent (Q = G0) to proliferative (P = S + M) phase of the cell cycle, a 72%-90% decrease in apoptosis, and a 76%-106% increase in anchorage-dependent growth. These cells also exhibited a 88%-90% decrease in the ratio of C2 to C16alpha-hydroxylation products of E2. Treatment of 184-B5/BP, 184-B5/HER, and MDA-MB-231 cells to cytostatic dose of 50 microM I3C resulted in an 137%-210% increase in Q/P I3C ratio, a 4- to 18-fold increase in E2 metabolite ratio, a 2-fold increase in cellular apoptosis, and a 54%-61% inhibition of growth. The preventive efficacy of I3C on human mammary carcinogenesis may be due in part to its ability to regulate cell-cycle progression, increase the formation of antiproliferative E2 metabolite, and induce cellular apoptosis.

Download full-text PDF

Source
http://dx.doi.org/10.3181/00379727-216-44174DOI Listing

Publication Analysis

Top Keywords

aberrant proliferation
16
estradiol metabolism
8
cell-cycle progression
8
184-b5/bp 184-b5/her
8
184-b5/her mda-mb-231
8
mda-mb-231 cells
8
decrease ratio
8
cellular apoptosis
8
i3c
6
cells
6

Similar Publications

N7-methylguanosine modification in cancers: from mechanisms to therapeutic potential.

J Hematol Oncol

January 2025

Department of Gynecology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.

N7-methylguanosine (m7G) is an important RNA modification involved in epigenetic regulation that is commonly observed in both prokaryotic and eukaryotic organisms. Their influence on the synthesis and processing of messenger RNA, ribosomal RNA, and transfer RNA allows m7G modifications to affect diverse cellular, physiological, and pathological processes. m7G modifications are pivotal in human diseases, particularly cancer progression.

View Article and Find Full Text PDF

Role of PGC-1α in the proliferation and metastasis of malignant tumors.

J Mol Histol

January 2025

Department of Thoracic Surgery, Lung Cancer Diagnosis and Treatment Center of Dalian, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.

Malignant tumors are among the major diseases threatening human survival in the world, and advancements in medical technology have led to a steady increase in their detection rates worldwide. Despite unique clinical presentations across the spectrum of malignancies, treatment modalities generally adhere to common strategies, encompassing primarily surgical intervention, radiation therapy, chemotherapy, and targeted treatments. Uncovering the genetic elements contributing to cancer cell proliferation, metastasis, and drug resistance remains a pivotal pursuit in the development of novel targeted therapeutics.

View Article and Find Full Text PDF

Infections impacting the central nervous system (CNS) constitute a substantial predisposing factor for the emergence of epileptic seizures. Given that epilepsy conventionally correlates with hippocampal sclerosis and neuronal degeneration, a potentially innovative avenue for therapeutic intervention involves fostering adult neurogenesis, a process primarily occurring within the subgranular zone of the dentate gyrus (DG) through the differentiation of neural stem cells (NSC). While experimental seizures induced by chemoconvulsants or electrical stimulation transiently enhance neurogenesis, the effects of encephalitis and the resultant virus-induced seizures remain inadequately understood.

View Article and Find Full Text PDF

The central nervous system (CNS) requires specialized blood vessels to support neural function within specific microenvironments. During neurovascular development, endothelial Wnt/β-catenin signaling is required for BBB development within the brain parenchyma, whereas fenestrated blood vessels that lack BBB properties do not require Wnt/β-catenin signaling. Here, we used zebrafish to further characterize this phenotypic heterogeneity of the CNS vasculature.

View Article and Find Full Text PDF

An open-label, phase IB/II study of abemaciclib with paclitaxel for tumors with CDK4/6 pathway genomic alterations.

ESMO Open

January 2025

Department of Internal Medicine, Division of Medical Oncology, Yonsei University College of Medicine, Seoul, Republic of Korea. Electronic address:

Background: Disruption of cyclin D-dependent kinases (CDKs), particularly CDK4/6, drives cancer cell proliferation via abnormal protein phosphorylation. This open-label, single-arm, phase Ib/II trial evaluated the efficacy of the CDK4/6 inhibitor, abemaciclib, combined with paclitaxel against CDK4/6-activated tumors.

Patients And Methods: Patients with locally advanced or metastatic solid tumors with CDK4/6 pathway aberrations were included.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!