Characterization of Phaseolus vulgaris cDNA clones responsive to water deficit: identification of a novel late embryogenesis abundant-like protein.

Plant Mol Biol

Departmento de Biologia Molecular de Plantas, Universidad Nacional Autónoma de México, México.

Published: November 1997

AI Article Synopsis

  • Six cDNA clones from Phaseolus vulgaris were isolated and linked to responses to water deficit and ABA, encoding various protective proteins including LEA, lmw-HSP, LTP, and PRPs.
  • Expression levels of these genes peaked around 16 to 24 hours during water deficit but showed different responses upon rehydration—PRPs and LTP maintained expression, while LEA genes rapidly decreased.
  • The genes exhibited organ-specific expression patterns, with most showing higher levels in roots, demonstrating the critical role of these proteins in plant adaptation to water stress.

Article Abstract

Six cDNA clones from Phaseolus vulgaris, whose expression is induced by water deficit and ABA treatment (rsP cDNAs) were identified and characterized. The sequence analyses of the isolated clones suggest that they encode two types of late-embryogenesis abundant (LEA) proteins, a class-1 cytoplasmic low-molecular-weight heat shock protein (lmw-HSP), a lipid transfer protein (LTP), and two different proline-rich proteins (PRP). One of the putative LEA proteins identified corresponds to a novel 9.3 kDa LEA-like protein. During the plant response to a mild water deficit (psi w = -0.35 MPa) all genes identified present a maximal expression at around 16 or 24 h of treatment, followed by a decline in expression levels. Rehydration experiments revealed that those genes encoding PRPs and LTP transiently re-induce or maintain their expression when water is added to the soil after a dehydration period. This is not the case for the lea genes whose transcripts rapidly decrease, reaching basal levels a few hours after rehydration (4 h). Under water deficit and ABA treatments, the highest levels of expression for most of the genes occur in the root, excluding the ltp gene whose maximum expression levels are found in the aerial regions of the plant. This indicates that for these genes, both water deficit and ABA-dependent expression are under organ-specific control. The data presented here support the importance of these proteins during the plant response to water deficit.

Download full-text PDF

Source
http://dx.doi.org/10.1023/a:1005802505731DOI Listing

Publication Analysis

Top Keywords

water deficit
24
phaseolus vulgaris
8
cdna clones
8
deficit aba
8
lea proteins
8
plant response
8
expression levels
8
water
7
expression
7
deficit
6

Similar Publications

Introduction: Plant physiology response and adaptation to drought stress has become a hotspot in plant ecology and evolution. possesses high ecological, ornamental and economic benefits. It has large root system and tolerance to cold, drought and poor soil.

View Article and Find Full Text PDF

Drought is a reoccurring natural phenomenon that presents significant challenges to agricultural production, ecosystem stability, and water resource management. The Central Highlands of Vietnam, a major region of industrial crops and vegetation ecosystems, has become increasingly vulnerable to drought impacts. Despite this vulnerability, limited research has explored the specific characteristics of drought and its seasonal effects on vegetation ecosystems in the region.

View Article and Find Full Text PDF

Various practical strategies have been employed to mitigate the detrimental effects of water deficit stress on plants such as application of nano-stimulants. Nanosilicon plays a crucial role in alleviating the deleterious impacts of both abiotic and biotic stresses in plants by modulating various phyto-morphological and physiological processes. This study aimed to examine the combined effects of drought stress and nanosilicon application on the morphological traits and essential oil content and compositions of hemp (Cannabis sativa L.

View Article and Find Full Text PDF

Background: We investigated chitosan's protective effects against tertiary butylhydroquinone (TBHQ)-induced toxicity in adult male rats, focusing on cognitive functions and oxidative stress in the brain, liver, and kidneys.

Methods: Rats were divided into four groups (n = 8/group): (1) Control, (2) Chitosan only, (3) TBHQ only, and (4) Chitosan + TBHQ.

Results: TBHQ exposure led to significant cognitive impairments and increased oxidative stress, marked by elevated malondialdehyde (MDA) and decreased superoxide dismutase (SOD) and glutathione (GSH) levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!