To test the hypothesis of temporal modifications of cochlear responses when medial efferents are activated, otoacoustic emission latencies were estimated in 16 normal human subjects, in the presence and absence of a contralateral broadband noise, using measurements of the phase of the 2f1-f2 distortion product (group latency method). Significant decrease in the latency of lower frequency (0.8-2.7 kHz) emissions was found in the presence of increasing levels of contralateral sound, and this effect disappeared when the primary-tone levels increased to 60 dB SPL. To ensure that effects were not attributable to mechanisms involving middle ear structures, susceptible to activation by contralateral sound, latency measures were performed in seven subjects whose efferents were severed during a vestibular neurotomy and in two subjects with paralyzed stapedial muscle. Results in patients were compared to those obtained in three surgical control patients with intact efferent bundle, and in eight other normal subjects. All the subject groups exhibited a decrease in latency under contralateral sound except the patients with the severed efferent system who showed increased latencies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/1.419635 | DOI Listing |
PLoS One
January 2025
Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil.
Background And Objective: One of the functions attributed to the auditory efferent system is related to the processing of acoustic stimuli in noise backgrounds. However, clinical implications and the neurophysiological mechanisms of this system are not yet understood, especially on higher regions of the central nervous system. Only a few researchers studied the effects of noise on cortical auditory evoked potentials (CAEP), but the lack of studies in this area and the contradictory results, especially in children, point to the need to investigate different protocols and parameters that could allow the study of top-down activity in humans.
View Article and Find Full Text PDFMed Sci Monit
January 2025
Department of Otorhinolaryngology Head and Neck Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China.
BACKGROUND The precedence effect (PE) is a physiological phenomenon for accurate sound localization in a reverberant environment. Physiological studies of PE have mostly focused on the central nucleus of the inferior colliculus (CNIC), which receives ascending and descending projections, as well as projections from the shell of the inferior colliculus (IC) and contralateral IC. However, the role of the dorsal cortex of the IC (DCIC), which receives ascending and descending projections to ensure sound information processing and conduction on PE formation, remains unclear.
View Article and Find Full Text PDFNoise Health
January 2025
Department of Neurology, Faculty of Medicine, Ondokuz Mayis University, Samsun, Turkey.
Background: Patients with multiple sclerosis (MS) experience difficulties in understanding speech in noise despite having normal hearing.
Aim: This study aimed to determine the relationship between speech discrimination in noise (SDN) and medial olivocochlear reflex levels and to compare MS patients with a control group.
Material And Methods: Sixty participants with normal hearing, comprising 30 MS patients and 30 healthy controls, were included.
Front Oncol
December 2024
Department of Ultrasound, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
Objective: To investigate the clinical and ultrasound features of fibrous pseudotumor of tunica vaginalis of the testis.
Methods: The clinical and ultrasound features of fibrous pseudotumor of the tunica vaginalis diagnosed by pathology in West China Hospital of Sichuan University from 2006 to 2023 were retrospectively analyzed.
Results: The study included 8 patients diagnosed with fibrous pseudotumor of the tunica vaginalis.
Am J Audiol
January 2025
Department of Otolaryngology, University of Utah, Salt Lake City.
Purpose: Unilateral cochlear implant (CI) recipients with limited hearing in the contralateral ear are deprived of the advantages of binaural hearing. To address speech recognition challenges arising from the head shadow effect, a contralateral routing of signal (CROS) device can be used; however, less is known of the broader impact of a CROS device on an individual's quality of life (QoL) or that of their frequent communication partners (FCPs). This preliminary study aimed to evaluate the impact of CROS on speech recognition in noise and its influence on the QoL of unilateral CI recipients and their FCPs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!