4-Nitrophenol 2-hydroxylation activity was previously shown to be mainly catalyzed by P450 2E1 in animal species and humans. As this chemical compound is widely used as an in vitro probe for P450 2E1, this study was carried out to test its catalytic specificity. First, experiments were carried out on liver microsomes and hepatocyte cultures of rat treated with different inducers. Liver microsomes from pyrazole- and dexamethasone-treated rats hydroxylated p-nitrophenol with a metabolic rate increased by 2.5- and 2.7-fold vs control. Dexamethasone treatment increased the hepatic content of P450 3A but not that of P450 2E1. Two specific inhibitors of P450 3A catalytic activities, namely, ketoconazole and troleandomycin (TAO), inhibited up to 50% of 4-nitrophenol hydroxylation in dexamethasone-treated rats but not in controls. Hepatocyte cultures from dexamethasone-treated rats transformed p-nitrophenol into 4-nitrocatechol 7.8 times more than controls. This catalytic activity was inhibited by TAO. Similarly, hepatocyte cultures from pyrazole-treated rats hydroxylated p-nitrophenol with a metabolic ratio increased by about 8-fold vs control. This reaction was inhibited by diethyl dithiocarbamate and dimethyl sulfoxide, both inhibitors of P450 2E1. Second, the capability of human P450s other than P450 2E1 to catalyze the formation of 4-nitrocatechol was examined in a panel of 13 human liver microsomes. Diethyl dithiocarbamate and ketoconazole reduced 4-nitrophenol hydroxylase activity by 77% (+/- 11) and 13% (+/- 16), respectively. Furthermore, the residual activity following diethyl dithiocarbamate inhibition was significantly correlated with seven P450 3A4 catalytic activities. Finally, the use of human cell lines genetically engineered for expression of human P450s demonstrated that P450 2E1 and 3A4 hydroxylated 4-nitrophenol with turnovers of 19.5 and 1.65 min-1, respectively. In conclusion, P450 3A may make a significant contribution to 4-nitrophenol hydroxylase activity in man and rat.

Download full-text PDF

Source
http://dx.doi.org/10.1021/tx970048zDOI Listing

Publication Analysis

Top Keywords

p450 2e1
32
liver microsomes
12
hepatocyte cultures
12
dexamethasone-treated rats
12
diethyl dithiocarbamate
12
p450
11
2e1
8
catalytic activity
8
rats hydroxylated
8
hydroxylated p-nitrophenol
8

Similar Publications

Scopoletin alleviates acetaminophen-induced hepatotoxicity through modulation of NLRP3 inflammasome activation and Nrf2/HMGB1/TLR4/NF-κB signaling pathway.

Int Immunopharmacol

January 2025

Key Laboratory of Natural Medicines of Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin 133002, China. Electronic address:

Scopoleitin (SP), a bioactive compound from many edible plants and fruits, exerts a wide range of biological activities, however the role and mechanism of SP in acetaminophen (APAP)-induced hepatotoxicity remains unclear. In this study, we verified the protective effect of SP on APAP-induced liver injury (AILI) hepatotoxicity and explore the underlying molecular mechanisms. Here, we showed that SP alleviated AILI by reducing serum alanine transaminase (ALT) and aspartate aminotransferase (AST) levels, hepatic histopathological damage, inflammation, and liver cell apoptosis.

View Article and Find Full Text PDF

Subacute PM2.5 Exposure Induces Hepatic Insulin Resistance Through Inflammation and Oxidative Stress.

Int J Mol Sci

January 2025

School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, No. 232, East Waihuan Road, Guangzhou Higher Education Mega Centre, Panyu District, Guangzhou 510006, China.

Epidemiological studies prove that type II diabetes, characterized by insulin resistance (IR), may be caused by fine particulate matter 2.5 (PM2.5).

View Article and Find Full Text PDF

The Functional Identification of the Gene in the Kidney of .

Int J Mol Sci

January 2025

Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science, Tarim University, Alar 843300, China.

This study aims to identify the function of the () gene in the kidneys of . CYP2E1 is a significant metabolic enzyme involved in the metabolism of various endogenous and exogenous compounds and is associated with the occurrence and progression of multiple diseases. Given 's ability to survive in the extremely arid , we hypothesize that CYP2E1 in its kidneys plays a crucial role in adaptability.

View Article and Find Full Text PDF

Background: Methylcinnamate (MC), a safe flavoring agent naturally found in Occimum basilicum L. is reported to have an anti-inflammatory responses in various disease models. Acetaminophen (APAP) toxicity is a significant contributor to acute liver injury, which leads to oxidative stress and inflammation.

View Article and Find Full Text PDF

The harmful by-product of paracetamol is known as N-Acetyl-p-benzoquinoneimine, (NAPQI). When paracetamol is given at therapeutic dosages or in excess, it undergoes Phase I metabolism in the liver via Cytochrome P-450 2E1 (CYP2E1), and then it produces NAPQI. Previous studies reported that a non-ionic surfactant known as Brij 35 (Polyoxyethylene lauryl ether) has been shown to be an effective inhibitor of CYP2E1 and P-glycoprotein (P-gp).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!