To mimic the effect of ischemia on the integrity of airway epithelium and expression of cystic fibrosis transmembrane conductance regulator (CFTR), we induced an ATP depletion of the respiratory epithelium from upper airway cells (nasal tissue) and human bronchial epithelial 16HBE14o- cell line. Histological analysis showed that 2 h of ATP depletion led to a loss of the epithelium integrity at the interface between basal cells and columnar cells. The expression of connexin 43 (Cx43, subunit of the gap junctions) and desmoplakins 1 and 2 (DPs 1 and 2, major components of the desmosomes) proteins was inhibited. After 90 min of ATP depletion, a significant decrease of the transepithelial resistance (25%) was observed but was reversible. Similar results were obtained with the 16HBE14o- human bronchial epithelial cell line. ATP depletion led to actin filaments depolymerization. The expression of the mature CFTR (170 kDa) and fodrin proteins at the apical domain of the ciliated cells was down-regulated. The steady-state levels of CFTR, Cx43, DPs 1 and 2 mRNAs, semiquantified by RT-polymerase chain reaction kinetics, remained constant throughout ATP depletion in nasal tissue as in the homogeneous cell population of 16HBE14o- human bronchial epithelial cell line. This suggests that the down-regulation of these proteins might be posttranscriptional. The intercellular diffusion through gap junctions of Lucifer dye was completely inhibited after 90 min of ATP depletion but was reversible. The volume-dependent and the cAMP-dependent chloride secretion were inhibited in a nonreversible way. Taken together, these results suggest that an ATP depletion in human airway epithelium, mimicking ischemia, may induce a marked alteration in the junctional complexes and cytoskeleton structure concomitantly with a loss of apical CFTR expression and chloride secretion function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.272.44.27830 | DOI Listing |
Nucleosome repositioning is essential for establishing nucleosome-depleted regions (NDRs) to initiate transcription. This process has been extensively studied using structural, biochemical, and single-molecule approaches, which require homogenously positioned nucleosomes. This is often achieved using the Widom 601 sequence, a highly efficient nucleosome positioning element (NPE) selected for its unusually strong binding to the H3-H4 histone tetramer.
View Article and Find Full Text PDFiScience
January 2025
Department of Vascular Surgery, Lausanne University Hospital (CHUV), Lausanne, Switzerland.
Aging is accompanied by a decline in neovascularization potential and increased susceptibility to ischemic injury. Here, we confirm the age-related impaired neovascularization following ischemic leg injury and impaired angiogenesis. The age-related deficits in angiogenesis arose primarily from diminished EC proliferation capacity, but not migration or VEGF sensitivity.
View Article and Find Full Text PDFNat Commun
January 2025
Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium.
Recalcitrant bacterial infections can be caused by various types of dormant bacteria, including persisters and viable but nonculturable (VBNC) cells. Despite their clinical importance, we know fairly little about bacterial dormancy development and recovery. Previously, we established a correlation between protein aggregation and dormancy in Escherichia coli.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biological Sciences, University of North Texas, 1511 West Sycamore Street, Denton, TX, 76203, USA.
Transmembrane proteins (TMEMs) are embedded in cell membranes and often have poorly understood functions. Our RNAseq analysis identified 89 tmem genes in zebrafish thrombocytes, leading to further investigation through knockdown experiments and gill bleeding assays. Knockdown of tmem242 significantly increased bleeding, indicating a role in hemostasis.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, PR China. Electronic address:
Multidrug resistance (MDR) has become a major challenge in tumor chemotherapy, primarily associated with the overexpression of P-glycoprotein (P-gp). Inhibiting P-gp expression and function through redox dyshomeostasis has shown great potential for reversing MDR. Here, a nanometer system of copper-based metal-organic framework (HA-CuMOF@DOX) modified with hyaluronic acid (HA) was constructed to overcome MDR via two-way regulation of redox homeostasis under hypoxia.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!