69-kDa and 100-kDa isoforms of interferon-induced (2'-5')oligoadenylate synthetase exhibit differential catalytic parameters.

Eur J Biochem

Unité de Virologie et Immunologie Cellulaire (ERS CNRS 572) Institut Pasteur, Paris, France.

Published: September 1997

The (2'-5')oligoadenylate synthetase represents a family of interferon-induced proteins which when activated by double-stranded (ds)RNA polymerizes ATP into 2'-5'-linked oligomers with the general formula pppA(2'p5'A)n, where n > 1, which for convenience are referred to as 2-5A. We studied here the influence of pH, dsRNA concentration and time on oligomeric composition of 2-5A synthesized by purified 69-kDa and 100-kDa isoforms of (2'-5')oligo(adenylate) synthetase. In optimal conditions for activity, the 69-kDa form synthesized higher oligomers of 2-5A molecules whereas the 100 kDa form synthesized preferentially dimeric molecules, which are known not to be functional for the activation of RNase L. This difference does not reflect a differential affinity of the enzymes for the preformed 2-5A dimer, which is found to be a very poor substrate for both enzymes. This latter strongly suggests that the mechanism of elongation is more likely processive. Moreover, we show that both isoforms have efficient nucleotidyl-transferase activity and provide evidence that, in optimized conditions, GTP can be used alone as substrate by these enzymes to generate pppG2'p5'G. Our results clearly demonstrate that the 69-kDa and 100-kDa forms of (2'-5')oligoadenylate synthetase manifest various differential catalytic activities, and favor the hypothesis that these enzymes might have other functions in the cell besides those in the 2-5A system.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1432-1033.1997.t01-1-00558.xDOI Listing

Publication Analysis

Top Keywords

2'-5'oligoadenylate synthetase
16
69-kda 100-kda
12
100-kda isoforms
8
differential catalytic
8
form synthesized
8
substrate enzymes
8
2-5a
5
69-kda
4
isoforms interferon-induced
4
2'-5'oligoadenylate
4

Similar Publications

The 2'-5' oligoadenylate synthetase (OAS)family, comprising OAS1, OAS2, OAS3, and OASL, has been shown to participate in the host immune response against Mycobacterium tuberculosis (Mtb). However, their expression profiles in tuberculosis (TB) remain inconsistent. In two TB-related datasets, the OAS family exhibits contrasting expression trends.

View Article and Find Full Text PDF

The immune system and neuroinflammation are now well established in the aetiology of neurodegeneration. Previous studies of transcriptomic and gene association studies have highlighted the potential of the 2'-5' oligoadenylate synthetase 1 (OAS1) to play a role in Alzheimer's disease. OAS1 is a viral response gene, interferon-induced, dsRNA activated enzyme, which binds RNase L to degrade dsRNA, and has been associated with COVID-19 response.

View Article and Find Full Text PDF

About 296 million people worldwide are living with chronic hepatitis B viral (HBV) infection, and outcomes to end-stage liver diseases are potentiated by alcohol. HBV replicates in hepatocytes, but other liver non-parenchymal cells can sense the virus. In this study, we aimed to investigate the regulatory effects of macrophages on HBV marker and interferon-stimulated genes (ISGs) expressions in hepatocytes.

View Article and Find Full Text PDF

Abundant infiltration of tumor-associated macrophages (TAMs) within the tumor stroma plays a pivotal role in inducing immune escape in pancreatic cancer (PC). Lactate serves as a direct regulator of macrophage polarization and functions, although the precise regulation mechanism remains inadequately understood. Our study revealed that PC cells (PCs) promote macrophage polarization toward M2d through high lactate secretion.

View Article and Find Full Text PDF

Clinically, phosphodiesterase type 5 inhibitors (PDE5-Is) remain the first-line therapy for erectile dysfunction (ED) patients; however, approximately 35% of these patients are still failing to respond to the therapeutic effects. So, urgent needs are required to identify novel therapeutic targets for ED. Hence, in this report, it was the first time for us to integrate single-cell RNA-sequencing (scRNA-Seq), mendelian randomization (MR) analysis with expression quantitative trait loci (eQTL), and protein quantitative trait loci (pQTL) data to find new treatment targets for ED.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!