A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Detection of gene-environment interactions in joint segregation and linkage analysis. | LitMetric

Detection of gene-environment interactions in joint segregation and linkage analysis.

Am J Hum Genet

Department of Preventive Medicine, University of Southern California, Los Angeles, CA 90033, USA.

Published: November 1997

We compare approaches for analysis of gene-environment (G x E) interaction, using segregation and joint segregation and linkage analyses of a quantitative trait. Analyses of triglyceride levels in a single large pedigree demonstrate the two methods and show evidence for a significant interaction (P=.015 when segregation analysis is used; P=.006 when joint analysis is used) between a codominant major gene and body-mass index. Genotype-specific correlation coefficients, between triglyceride levels and body-mass index, estimated from the joint model are rAA=.72, rAa=.49, and raa=. 20. Several simulation studies indicate that joint segregation and linkage analysis leads to less-biased and more-efficient estimates of a G x E-interaction effect, compared with segregation analysis alone. Depending on the heterozygosity of the marker locus and its proximity to the trait locus, we found joint analysis to be as much as 70% more efficient than segregation analysis, for estimation of a G x E-interaction effect. Over a variety of parameter combinations, joint analysis also led to moderate (5%-10%) increases in power to detect the interaction. On the basis of these results, we suggest the use of combined segregation and linkage analysis for improved estimation of G x E-interaction effects when the underlying trait gene is unmeasured.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1716048PMC
http://dx.doi.org/10.1086/301597DOI Listing

Publication Analysis

Top Keywords

segregation linkage
16
joint segregation
12
linkage analysis
12
segregation analysis
12
joint analysis
12
analysis
10
segregation
8
triglyceride levels
8
estimation e-interaction
8
joint
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!