The HIV-1 matrix domain of Gag is required for Vpu responsiveness during particle release.

Virology

McArdle Laboratory for Cancer Research, University of Wisconsin Medical School, 1400 University Avenue, Madison, Wisconsin 53706, USA.

Published: October 1997

HIV-1 viral protein U (Vpu) facilitates virus particle release. To determine whether Gag is sufficient for generation of a target for Vpu-mediated particle release, we expressed HIV-1 Gag protein in the absence of the other viral genes. The resulting particles were still Vpu responsive. Mutational analysis of Gag indicated that the matrix domain (MA) is required for Vpu responsiveness. However, additional mutations in other domains of Gag, which affect the formation of stable virus particles, also abrogate Vpu responsiveness on total Gag release. Coexpression of the wild-type gag gene and a gag mutant lacking the MA domain renders the MA- mutant Vpu responsive. This indicates that Gag molecules lacking MA are still incorporated into particles through association with wild-type Gag molecules and that the resulting composite particles are sufficient for Vpu-mediated exit.

Download full-text PDF

Source
http://dx.doi.org/10.1006/viro.1997.8711DOI Listing

Publication Analysis

Top Keywords

vpu responsiveness
12
particle release
12
gag
10
matrix domain
8
required vpu
8
vpu responsive
8
wild-type gag
8
gag molecules
8
vpu
6
hiv-1 matrix
4

Similar Publications

HIV-1 Vpu and SARS-CoV-2 ORF3a proteins disrupt STING-mediated activation of antiviral NF-κB signaling.

Sci Signal

January 2025

Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China.

Activation of the stimulator of interferon genes (STING) pathway by cytosolic DNA leads to the activation of the transcription factors interferon regulatory factor 3 (IRF3) and nuclear factor κB (NF-κB). Although many viruses produce proteins that inhibit IRF3-dependent antiviral responses, some viruses produce proteins that inhibit STING-induced NF-κB activation without blocking IRF3 activation. Here, we found that STING-activated, NF-κB-dependent, and IRF3-independent innate immunity inhibited the replication of the DNA virus herpes simplex virus type 1 (HSV-1), the RNA virus coxsackievirus A16 (CV-A16), and the retrovirus HIV-1.

View Article and Find Full Text PDF

Introduction: Nursing research is an integral part of nursing science and essential for evidence-based nursing practice. Research conducted by nursing scientists employed at university hospitals is shaped by the specific prevailing conditions. It is largely unclear to what extent these nursing scientists are engaged in research and which difficulties they have to face.

View Article and Find Full Text PDF

Signatures of neurodegeneration in clinical samples from a subject with multiple sclerosis (MS) acutely infected with HIV were investigated with single-cell transcriptomics using 10X Chromium technology. Sequencing was carried out on NovaSeq-TM, and the analysis was performed with Cell Ranger software (v 7.1.

View Article and Find Full Text PDF

Background: High HIV viral loads (VL) are associated with increased morbidity, mortality, and on-going transmission. HIV controllers maintain low VLs in the absence of antiretroviral therapy (ART). We previously used a massively multiplexed antibody profiling assay (VirScan) to compare antibody profiles in HIV controllers and persons living with HIV (PWH) who were virally suppressed on ART.

View Article and Find Full Text PDF

HIV-1 Vpr Functions in Primary CD4 T Cells.

Viruses

March 2024

Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tuebingen, 72076 Tuebingen, Germany.

HIV-1 encodes four accesory proteins in addition to its structural and regulatory genes. Uniquely amongst them, Vpr is abundantly present within virions, meaning it is poised to exert various biological effects on the host cell upon delivery. In this way, Vpr contributes towards the establishment of a successful infection, as evidenced by the extent to which HIV-1 depends on this factor to achieve full pathogenicity in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!