The sensing of extracellular calcium is a general paradigm for regulating diverse cellular functions in many tissues. A calcium-sensing receptor (Casr) belonging to the metabotropic glutamate family of G-protein-coupled receptors (GPCR) that transduces the effects of extracellular calcium in the parathyroid gland as well as other tissues has been identified. The diversity of GPCR families and the recent finding of calcium sensing in cells lacking the known Casr suggest the existence of additional receptors related to Casr. By polymerase chain reaction (PCR) amplification and screening of genomic libraries, we have identified multiple Casr-related sequences (Casr-rs) in the mouse. Using primers designed to regions of the first and third intracellular loops of Casr, we initially PCR amplified a 497-bp Casr-related sequence (Casr-rs1) with high homology to Casr. The deduced protein sequence of Casr-rs1 is 63% similar and 40% identical to Casr over the available transmembrane region. We screened a mouse genomic library with a Casr-rs1 probe and identified two additional Casr-related sequences (Casr-rs2 and Casr-rs3). In the predicted transmembrane domain, Casr-rs2 and Casr-rs3 are 95% identical to Casr-rs1. We mapped Casr-rs1 to mouse Chromosome (Chr) 7 by interspecific backcross analysis, whereas the known Casr localizes to mouse Chr 16. By fluorescence in situ hybridization, Casr-rs2 also localized to mouse Chr 7 and Casr-rs3 mapped to mouse Chr 4. We were able to distinquish Casr-rs1 from Casr-rs2 by PCR using specific primers, suggesting that they are distinct genes clustered on Chr 7. By RT-PCR, we identified additional Casr-rs transcripts in mouse kidney, brain, testis, embryo, and MC3T3-E1 osteoblasts, but not in lung or liver. The homologous sequence in mouse kidney, embryo, and MC3T3-E1 osteoblasts, designated Casr-rs4, has a deduced amino acid sequence that is 100% similar and 97% identical to that of Casr-rs1. The sequence amplified from mouse brain, Casr-rs5, has a deduced protein sequence that is 96% similar and 92% identical to that of Casr-rs1. Our findings establish the existence of a novel multimembered family of Casr-related sequences in the mouse which may encode receptors that transduce responses to diverse extracellular cations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/geno.1997.4943 | DOI Listing |
Endocrine
March 2015
Endocrinology and Metabolism Service, Department of Internal Medicine, Hadassah-Hebrew University Medical Center, POB 24035, 91240, Jerusalem, Israel,
The calcium-sensing receptor (CaSR) is a G-protein-coupled receptor with a crucial role in calcium homeostasis. Mutations in the CaSR gene may lead to specific parathyroid disorders due to either gain-of-function (autosomal dominant hypercalciuric hypocalcemia; ADHH) or loss-of-function (familial hypocalciuric hypercalcemia; FHH). Our aim was to evaluate CaSR mutations as a cause of disease in selected patients.
View Article and Find Full Text PDFEur J Hum Genet
April 2010
Academic Endocrine Unit, Nuffield Department of Clinical Medicine, Churchill Hospital, University of Oxford, Oxford, UK.
Familial benign hypocalciuric hypercalcaemia (FBHH) is a genetically heterogeneous disorder that consists of three designated types, FBHH1, FBHH2 and FBHH3, whose chromosomal locations are 3q21.1, 19p and 19q13, respectively. FBHH1 is caused by mutations of a calcium-sensing receptor (CaSR), but the abnormalities underlying FBHH2 and FBHH3 are unknown.
View Article and Find Full Text PDFCytogenet Cell Genet
January 2000
Department of Biology, University of Delaware, Newark, DE, USA.
Diverse cellular functions are regulated by the calcium-sensing receptor, encoded by the CASR gene, which plays an important role in calcium homeostasis. Here we provide the sequence for exon VII of the rabbit CASR gene and show that it is 91% identical to the human gene at the nucleotide level, and 95% identical at the amino acid level. The gene was mapped by fluorescence in situ hybridization, using a cosmid isolated from a genomic library, to chromosome 14q11 and this was confirmed independently by PCR amplification of flow sorted chromosomes.
View Article and Find Full Text PDFGenomics
October 1997
Department of Medicine and Pathology, Duke University Medical Center, Durham, North Carolina 27710, USA.
The sensing of extracellular calcium is a general paradigm for regulating diverse cellular functions in many tissues. A calcium-sensing receptor (Casr) belonging to the metabotropic glutamate family of G-protein-coupled receptors (GPCR) that transduces the effects of extracellular calcium in the parathyroid gland as well as other tissues has been identified. The diversity of GPCR families and the recent finding of calcium sensing in cells lacking the known Casr suggest the existence of additional receptors related to Casr.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!