The distribution of beta-amyloid precursor protein in rat cortex after systemic kainate-induced seizures.

Exp Neurol

Shapiro Molecular Neurobiology Laboratory, S. Herzog Memorial Hospital, Jerusalem, Israel.

Published: October 1997

In the current study we employed immunohistochemical techniques to identify neuronal and glial cells in specific brain areas that modulate beta-amyloid precursor protein (betaAPP) synthesis following kainate-induced seizures. In addition, antibodies directed against the FOS protein, which is generated by activation of the immediate early gene c-fos and is temporally associated with ongoing seizure activity, were used to identify transneuronal pathways activated after kainate-induced seizures (KIS). It was therefore possible to correlate the appearance of activated neuronal pathways identified by FOS-like immunoreactivity (LI) and PAPP-LI in alternate sections. In addition, we employed immunohistochemical procedures to characterize morphological changes in neuronal and glial cells following kainate-induced seizures in both young and adult rats. Our results demonstrate a specific pattern of FOS-LI induced by kainate injection. In older animals FOS-LI spreads out from limbic cortical regions, including the piriform and entorhinal cortex, to other cortical regions, including the parietal and somatosensory cortices. Seizures were associated with decrease in neuronal betaAPP-LI in both young and adult rats, whereas glial betaAPP-LI markedly increased. The increase in betaAPP-LI glia was far more extensive in adult than in young rats and the anatomical distribution of betaAPP-LI glia was grossly correlated with FOS-LI. The spread of betaAPP-LI follows seizure-activated transsynaptic pathways. It is likely that the sequence of events following kainate injection is initially triggered by c-fos gene expression, which is rapidly followed by modulation of betaAPP synthesis in parallel to, or preceding, morphological changes of both microglia and astrocytes. The present study, which extensively characterized early changes in c-fos expression and betaAPP-LI in glia following kainate-induced seizures, is a potentially useful animal model for the in vivo study of numerous facets of betaAPP synthesis and the possible role of such processes in Alzheimer's disease.

Download full-text PDF

Source
http://dx.doi.org/10.1006/exnr.1997.6622DOI Listing

Publication Analysis

Top Keywords

kainate-induced seizures
20
betaapp synthesis
12
betaapp-li glia
12
beta-amyloid precursor
8
precursor protein
8
employed immunohistochemical
8
neuronal glial
8
glial cells
8
morphological changes
8
young adult
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!