Adsorption of Polycations on Clays: A Comparative in situ Study Using 133Cs and 23Na Solution Phase NMR.

J Colloid Interface Sci

Materials Research Institute, Sheffield Hallam University, Sheffield, S1 1WB, United Kingdom

Published: September 1997

23Na solution phase NMR has been evaluated as an in situ probe to study the adsorption of tetramethylammonium (TMA+) and two polycations, FL17 ([(Me2NCH2CHOHCH2)n]n+Cln) and Magnafloc 1697, ([(CH2CHCH2N(Me)2CH2&Cmacr;HCH2)n]n+Cln), onto clays in aqueous suspensions containing 2.5 mass% low iron Texas bentonite. The NMR data shows the effectiveness of the organocations at displacing Na+ from the bentonite surface. This information has been correlated with that obtained from particle-size and electrophoretic measurements in aqueous solution, together with information from adsorption isotherms. These results have been compared to those obtained in parallel studies using 133Cs solution phase NMR. FL17 and 1697 both exhibited high affinity adsorption isotherms on Na+- and Cs+-clay, whereas the adsorption of TMA+, which represents the cationic portion of the polymers was of lower affinity. Na+-bentonite adsorbed almost twice the amount of polycation required to fulfill the cation-exchange capacity (CEC) of the bentonite. The electrophoretic and particle size data indicated significant differences in the size of the polycation/clay flocs and the amount of polymer adsorbed on the external faces of the flocs in the presence of Na+- and Cs+-exchange ions. Correlation of this data with the NMR results suggests that the Na+-bentonite/polycation flocs are large, of low density, and that the polycation is concentrated in the interior while the Na+-ions occupy exchange sites on the external faces. Copyright 1997 Academic Press. Copyright 1997Academic Press

Download full-text PDF

Source
http://dx.doi.org/10.1006/jcis.1997.5070DOI Listing

Publication Analysis

Top Keywords

solution phase
12
phase nmr
12
23na solution
8
adsorption isotherms
8
external faces
8
adsorption
5
nmr
5
adsorption polycations
4
polycations clays
4
clays comparative
4

Similar Publications

Aggregation-caused quenching (ACQ) reduces luminescence and compromises brightness in solid-state displays, necessitating strategies to mitigate its effects for enhanced performance. This study presents cost-effective method to mitigate ACQ of pyrene by co-assembling polycyclic aromatic hydrocarbons within low molecular weight gelator. ​Synthesized from readily available materials-cholesteryl chloroformate and pentaerythritol-in one-step reaction, gelator incorporates four cholesteryl units, reported to promote robust supramolecular gels in various solvents.

View Article and Find Full Text PDF

Avoiding severe structural distortion, irreversible phase transition, and realizing the stabilized multielectron redox are vital for promoting the development of high-performance NASICON-type cathode materials for sodium-ion batteries (SIBs). Herein, a high-entropy NaVFeTiMnCr(PO) (HE-NaTMP) cathode material is prepared by ultrafast high-temperature shock, which inhibits the possibility of phase separation and achieves reversible and stable multielectron transfer of 2.4/2.

View Article and Find Full Text PDF

"Popping the Ion-Basket": Enhancing Thermoelectric Performance of Conjugated Polymers by Blending with Latently Dissociable Perovskite Quantum Dots.

Adv Sci (Weinh)

January 2025

SKKU Advanced Institute of Nanotechnology (SAINT) and Department of Nano Science and Technology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.

A novel additive method to boost the Seebeck coefficient of doped conjugated polymers without a significant loss in electrical conductivity is demonstrated. Perovskite (CsPbBr) quantum dots (QDs) passivated by ligands with long alkyl chains are mixed with a conjugated polymer in a solution phase to form polymer-QD blend films. Solution sequential doping of the blend film with AuCl solution not only doped the conjugated polymer but also decomposed the QDs, resulting in a doped conjugated polymer film embedded with separated ions dissociated from the QDs.

View Article and Find Full Text PDF

Pizuglanstat is a novel hematopoietic prostaglandin D synthase inhibitor and investigational treatment for Duchenne muscular dystrophy. This Phase 1 mass balance study aimed to characterize the absorption, metabolism, and excretion of carbon-14 (C)-labeled pizuglanstat in healthy adults (ClinicalTrials.gov, NCT04825431).

View Article and Find Full Text PDF

High-temperature reduction of TiO causes the gradual formation of structural defects, leading to oxygen vacancy planar defects and giving rise to Magnéli phases, which are substoichiometric titanium oxides that follow the formula Ti O, with 4 ≤ ≤ 9. A high concentration of defects provides several possible configurations for Ti and Ti within the crystal, with the variation in charge ordered states changing the electronic structure of the material. The changes in crystal and electronic structures of Magnéli phases introduce unique properties absent in TiO, facilitating their diverse applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!