Collectin-mediated antiviral host defense of the lung: evidence from influenza virus infection of mice.

J Virol

Department of Microbiology and Immunology, University of Melbourne, Parkville, Victoria, Australia.

Published: November 1997

Collagenous lectins (collectins) present in mammalian serum and pulmonary fluids bind to influenza virus and display antiviral activity in vitro, but their role in vivo has yet to be determined. We have used early and late isolates of H3N2 subtype influenza viruses that differ in their degree of glycosylation to examine the relationship between sensitivity to murine serum and pulmonary lectins in vitro and the ability of a virus to replicate in the respiratory tract of mice. A marked inverse correlation was found between these two parameters. Early H3 isolates (1968 to 1972) bear 7 potential glycosylation sites on hemagglutinin (HA), whereas later strains carry 9 or 10. Late isolates were shown to be much more sensitive than early strains to neutralization by the mouse serum mannose-binding lectin (MBL) and rat lung surfactant protein D (SP-D) and bound greater levels of these lectins in enzyme-linked immunosorbent assays and Western blot analyses. They also replicated very poorly in mouse lungs compared to the earlier strains. Growth in the lungs was greatly enhanced, however, if saccharide inhibitors of the collectins were included in the virus inoculum. The level of SP-D in bronchoalveolar lavage fluids increased on influenza virus infection. MBL was absent from lavage fluids of normal mice but could be detected in fluids from mice 3 days after infection with the virulent strain A/PR/8/34 (H1N1). The results implicate SP-D and possibly MBL as important components of the innate defense of the respiratory tract against influenza virus and indicate that the degree or pattern of glycosylation of a virus can be an important factor in its virulence.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC192277PMC
http://dx.doi.org/10.1128/JVI.71.11.8204-8212.1997DOI Listing

Publication Analysis

Top Keywords

influenza virus
16
virus infection
8
serum pulmonary
8
late isolates
8
respiratory tract
8
lavage fluids
8
virus
7
influenza
5
collectin-mediated antiviral
4
antiviral host
4

Similar Publications

Three hospitals implemented molecular point-of-care tests (POCTs) to screen patients for SARS-CoV-2 infection upon admission during the 2021/2022 influenza season, which in Belgium lasted from January to April 2022. The samples were simultaneously tested for influenza A/B. Influenza positivity at admission was examined in relation to patient characteristics and symptomatology.

View Article and Find Full Text PDF

To evaluate the performance of three rapid influenza diagnostic tests (RIDTs) for detecting influenza A and B viruses compared to RT-PCR. A total of 291 subjects with acute respiratory infections were enrolled. Respiratory specimens were collected and tested for influenza A and B viruses using three RIDTs.

View Article and Find Full Text PDF

Subacute thyroiditis - Is it really linked to viral infection? Retrospective hospital patient registry study.

J Clin Endocrinol Metab

January 2025

Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.

Objective: Subacute thyroiditis (SAT) is a painful inflammatory disorder of the thyroid gland, which - after a phase of thyrotoxicosis - leads to transient, or less frequently permanent hypothyroidism. Apart from a strong association with specific HLA alleles, the causes are uncertain. Viral disease has been hypothesised as a trigger, with Enteroviruses, namely Echoviruses and Coxsackieviruses, showing a seasonal distribution that coincides with the incidence of SAT.

View Article and Find Full Text PDF

Background: We continue to struggle with the prevention and treatment of the influenza virus. The 2009 swine flu pandemic, caused by the H1N1 strain of influenza A, resulted in numerous fatalities. The threat of influenza remains a significant concern for global health, and the development of novel drugs targeting these viruses is highly desirable.

View Article and Find Full Text PDF

TRIF-TAK1 signaling suppresses caspase-8/3-mediated GSDMD/E activation and pyroptosis in influenza A virus-infected airway epithelial cells.

iScience

January 2025

College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, P.R. China.

Pyroptosis plays an important role in attracting innate immune cells to eliminate infected niches. Our study focuses on how influenza A virus (IAV) infection triggers pyroptosis in respiratory epithelial cells. Here, we report that IAV infection induces pyroptosis in a human and murine airway epithelial cell line.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!