The use of capillary electrophoresis (CE) for clinically relevant assays is attractive since it often presents many advantages over contemporary methods. The small-diameter tubing that holds the separation medium has led to the development of multicapillary instruments, and simultaneous sample analysis. Furthermore, CE is compatible with a wide range of detectors, including UV-Vis, fluorescence, laser-induced fluorescence, electrochemistry, mass spectrometry, radiometric, and more recently nuclear magnetic resonance, and laser-induced circular dichroism systems. Selection of an appropriate detector can yield highly specific analyte detection with good mass sensitivity. Another attractive feature of CE is the low consumption of sample and reagents. However, it is paradoxical that this advantage also leads to severe limitation, namely poor concentration sensitivity. Often high analyte concentrations are required in order to have injection of sufficient material for detection. In this regard, a series of devices that are broadly termed 'analyte concentrators' have been developed for analyte preconcentration on-line with the CE capillary. These devices have been used primarily for non-specific analyte preconcentration using packing material of the C18 type. Alternatively, the use of very specific antibody-containing cartridges and enzyme-immobilized microreactors have been demonstrated. In the current report, we review the likely impact of the technology of capillary electrophoresis and the role of the CE analyte concentrator-microreactor on the analysis of biomolecules, present on complex matrices, in a clinical laboratory. Specific examples of the direct analysis of physiologically-derived fluids and microdialysates are presented, and a personal view of the future of CE in the clinical environment is given.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0378-4347(97)00275-2 | DOI Listing |
J Microsc
January 2025
Faculty of Medicine Carl Gustav Carus, Experimental Center, Technische Universität Dresden, Dresden, Germany.
Ribosomes, discovered in 1955 by George Palade, were initially described as small cytoplasmic particles preferentially associated with the endoplasmic reticulum (ER). Over the years, extensive research has focused on both the structure and function of ribosomes. However, a fundamental question - how many ribosomes are present within whole cells - has remained largely unaddressed.
View Article and Find Full Text PDFAquat Toxicol
January 2025
Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University of Santa Catarina - UFSC, Florianópolis, SC 88037-000, Brazil. Electronic address:
Personal care products (PCPs), such as sunscreens, are usually found in various aquatic ecosystems at low concentrations (ng l to µg l). However, there is limited information regarding their effects on marine bivalves. Therefore, the aim of this study was to evaluate the sublethal effects of environmental concentrations (1 and 100 µg l) of benzophenone-3 (BP-3) in Crassostrea gigas oysters after 1 and 7 days of exposure.
View Article and Find Full Text PDFJ Pharm Biomed Anal
January 2025
State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China; Simcere Zaiming Pharmaceutical Co, Ltd., Nanjing, China. Electronic address:
Capillary electrophoresis-sodium dodecyl sulfate (CE-SDS) is widely used in the biopharmaceutical industry for monitoring purity and analyzing impurities. The accuracy of the method may be compromised by artificial species resulting from sample preparation or electrophoresis separation due to suboptimal conditions. During non-reduced CE-SDS analysis of a multispecific antibody (msAb), named as multispecific antibody C (msAb-C), a cluster of unexpected peaks was observed after the main peak.
View Article and Find Full Text PDFBackground: Hemoglobin G-Siriraj is a rare hemoglobin variant caused by a β-globin gene mutation (HBB: c.22G>A). The focus of this paper is aimed mainly at the chromatographic and electrophoretic properties of hemoglobin G-Siriraj for a presumptive identification.
View Article and Find Full Text PDFBackground: Glycosylated hemoglobin (HbA1c) is a stable compound in human blood that covalently binds the N-terminal valine residue of the β-chain in hemoglobin A to the free aldehyde group of glucose. It can reflect the average blood glucose level of patients in the past 2 - 3 months. Therefore, the accuracy of HbA1c detection results is of great significance for the diagnosis and differential diagnosis of diabetes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!