We have previously demonstrated that an immunodominant CD4 T cell epitope, HA110-120 of the hemagglutinin (HA) of the A/PR/8/34 influenza virus, enzymatically assembled on the carbohydrate moieties of self immunoglobulins (Ig) primed the precursors of peptide-specific T cells and induced efficient proliferation in vivo of naive lymphocytes from transgenic mice expressing the peptide-specific T cell receptor. Here, we show that an immuno-galacto-peptide construct, IgG-gal-HA, does not require intracellular or extracellular processing to present the peptide to the specific T cells. The presentation occurs following the binding of the IgG-gal-HA construct to Fc gamma receptor on the surface of antigen-presenting cells (APC), with concurrent interaction of the peptides to their neighboring major histocompatibility complex class II molecules. This mechanism of peptide presentation may harness the immune response in vivo by the engagement of APC with a low capacity of antigen processing, such as neonatal B cells. In addition, the enzymatic method of assembling various aminated compounds on the sugar moieties of Ig may offer novel perspectives on immuno-targeting of antagonist peptides, cytostatic drugs, and biologically active ligands of therapeutic use.

Download full-text PDF

Source
http://dx.doi.org/10.1002/eji.1830270940DOI Listing

Publication Analysis

Top Keywords

assembled carbohydrate
8
carbohydrate moieties
8
presentation viral
4
viral peptide
4
peptide assembled
4
moieties immunoglobulin
4
immunoglobulin require
4
require processing
4
processing demonstrated
4
demonstrated immunodominant
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!