A novel, eukaryotic, hexameric DNA helicase that was earlier identified as a component of the multiprotein polymerase alpha complex [Biswas et al. (1993) Biochemistry 32, 13393-13398] has been purified to homogeneity and characterized. Thus far, our studies demonstrated that helicase A shares certain unique features of two other hexameric DNA helicases: the DnaB helicase of Escherichia coli and the T-antigen helicase of the SV40 virus. The helicase activity was stimulated by yeast replication protein A (RPA) and to a lower extent by E. coli single-stranded DNA binding protein (SSB). The helicase had an apparent molecular mass of 90 kDa, as determined by its mobility on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A tryptic peptide fragment of the polypeptide was sequenced followed by a BLAST search of GenBank with the tryptic peptide sequence. The search identified a 1.8 kb open reading frame previously designated as ykl017c on chromosome XI, that codes for a 78.3 kDa (683 amino acid) polypeptide. The important features of the polypeptide sequence of helicase A included a type I ATP/GTP binding motif, and a K E E R R L N V A M T R P R R sequence at the C-terminus that may be indicative of a nuclear localization signal which is required of a nuclear DNA helicase. The polypeptide sequence of helicase A appears to have homology to the DnaB helicase of E. coli (approximately 25%). The facts that these two helicases are vastly separated by evolution and retained similar structural and functional features, as demonstrated here, point to a possible significance of this limited homology. Although the amount of purified helicase A was limited, we have carried out necessary enzymatic characterization so that these data could be correlated with that of immunoaffinity-purified helicase A and recombinant helicase A expressed in heterologous systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi9712910 | DOI Listing |
BMC Pulm Med
January 2025
Department of Key Laboratory of Ningxia Stem Cell and Regenerative Medicine, Institute of Medical Sciences, Department of Pulmonary and Critical Care Medicine, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
Background: In this study, we aimed to explore the association between baseline and early changes in the neutrophil-to-lymphocyte ratio (NLR) and the 30-day mortality rate in patients having anti-melanoma differentiation-associated gene 5 (MDA5)-positive dermatomyositis with interstitial lung disease (DM-ILD).
Methods: Overall, 263 patients with anti-MDA5 DM-ILD from four centers in China were analyzed. Multivariate logistic regression analysis was used to evaluate the impact of baseline NLR on the 30-day mortality rate in patients with anti-MDA5-positive DM-ILD.
Cell Biosci
January 2025
School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong S.A.R., China.
Background: Pathogenic or null mutations in WRN helicase is a cause of premature aging disease Werner syndrome (WS). WRN is known to protect somatic cells including adult stem cells from premature senescence. Loss of WRN in mesenchymal stem cells (MSCs) not only drives the cells to premature senescence but also significantly impairs the function of the stem cells in tissue repair or regeneration.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA.
DEAD-box RNA-dependent ATPases are ubiquitous in all domains of life where they bind and remodel RNA and RNA-protein complexes. DEAD-box ATPases with helicase activity unwind RNA duplexes by local opening of helical regions without directional movement through the duplexes and some of these enzymes, including Ded1p from Saccharomyces cerevisiae, oligomerize to effectively unwind RNA duplexes. Whether and how DEAD-box helicases coordinate oligomerization and unwinding is not known and it is unclear how many base pairs are actively opened.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA.
The 40S ribosomal subunit recycling pathway is an integral link in the cellular quality control network, occurring after translational errors have been corrected by the ribosome-associated quality control (RQC) machinery. Despite our understanding of its role, the impact of translation quality control on cellular metabolism remains poorly understood. Here, we reveal a conserved role of the 40S ribosomal subunit recycling (USP10-G3BP1) complex in regulating mitochondrial dynamics and function.
View Article and Find Full Text PDFZhonghua Bing Li Xue Za Zhi
February 2025
Department of Pathology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!