Ubc9p is the conjugating enzyme for the ubiquitin-like protein Smt3p.

J Biol Chem

Laboratory of Cell Biology, Howard Hughes Medical Institute, Rockefeller University, New York, New York 10021, USA.

Published: October 1997

At least one essential function of Smt3p, a Saccharomyces cerevisiae ubiquitin-like protein similar to the mammalian protein SUMO-1, involves its posttranslational covalent attachment to other proteins. Using Smt3p affinity chromatography, we have isolated the second enzyme of the Smt3p conjugation pathway and have found that it is identical to Ubc9p, a previously identified protein that has extensive sequence similarity to the ubiquitin-conjugating enzymes (E2s) and that is required for yeast to progress through mitosis. A hallmark of E2s is the ability to form a thioester bond-containing covalent intermediate with ubiquitin (Ub). While we were unable to detect formation of a Ub approximately Ubc9p thioester, Ubc9p was found to form a thioester with Smt3p, indicating that Ubc9p is the functional analog of E2s in the Smt3p pathway and that this step is distinct from the ubiquitin pathway. Ubc9p is required for attachment of Smt3p to other proteins in vitro, suggesting that it is the only such enzyme in S. cerevisiae. These results suggest that, like ubiquitination, Smt3p conjugation may be a critical modification in cell cycle regulation.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.272.43.26799DOI Listing

Publication Analysis

Top Keywords

ubiquitin-like protein
8
smt3p
8
smt3p conjugation
8
form thioester
8
ubc9p
6
ubc9p conjugating
4
conjugating enzyme
4
enzyme ubiquitin-like
4
protein
4
protein smt3p
4

Similar Publications

IL-6 Promotes Muscle Atrophy by Increasing Ubiquitin-Proteasome Degradation of Muscle Regeneration Factors After Cerebral Infarction in Rats.

Neuromolecular Med

January 2025

Department of Rehabilitation Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, No. 168 Gushan Road, Dongshan Street, Jiangning District, Nanjing, 211199, Jiangsu, China.

Muscle atrophy in pathological or diseased muscles arises from an imbalance between protein synthesis and degradation. Elevated levels of interleukin-6 (IL-6) are a hallmark of ischemic stroke and have been associated with muscle atrophy in certain pathological contexts. However, the mechanisms by which IL-6 induces muscle atrophy in the context of stroke remain unclear.

View Article and Find Full Text PDF

Background: Directed by the enzyme pair PINK1 and PRKN, mitophagy is a crucial mitochondrial quality control mechanism that selectively decorates damaged mitochondria with phosphorylated ubiquitin (pS65-Ub), facilitating their lysosomal degradation. The dynamic pS65-Ub signal accumulates upon enhanced activation from increased mitochondrial damage or upon reduced autophagic-lysosomal flux. Previous studies including ours demonstrated altered mitophagy and elevated pS65-Ub levels in Parkinson's and Alzheimer's disease brains that also independently associated with α-synuclein, tau, or amyloid pathology.

View Article and Find Full Text PDF

Background: UFMylation is an understudied ubiquitin-like post-translational modification (PTM). Like ubiquitin, UFM1 is conjugated to substrates via a catalytic cascade involving a UFM1-specific E1 (UBA5), E2 (UFC1), and an E3 ligase complex (UFL1, DDRGK1 and CDK5RAP3). UFMylation is reversible, and this is mediated by UFSP2.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Columbia University Medical Center, New York, NY, USA.

Background: The ubiquitin-proteasome system (UPS) is the primary protein degrading mechanism in eukaryotes, and is essential for cellular homeostasis. Dysregulation of the UPS has been linked to neurodegeneration through two hallmarks, pathogenic protein aggregation and aberrant proteostasis. However, the molecular changes that alter proteasome functioning in AD are poorly understood.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Physiopathology in Aging Laboratory (LIM-22), University of São Paulo Medical School, São Paulo, São Paulo, Brazil.

Background: Understanding the molecular mechanisms underlying selective neuronal vulnerability is crucial for developing effective treatments for Alzheimer's disease (AD). Our group has shown that RORB/CDH9-positive excitatory neurons in the entorhinal cortex (EC) display selective vulnerability as early as Braak stage (BB) 2. However, not all RORB/CDH9-positive neurons are vulnerable.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!