The peritrichous flagella of Rhizobium meliloti rotate only clockwise and control directional changes of swimming cells by modulating flagellar rotary speed. Using Tn5 insertions, we have identified and sequenced a motility (mot) operon containing three genes, motB, motC, and motD, that are translationally coupled. The motB gene (and an unlinked motA) has been assigned by similarity to the Escherichia coli and Bacillus subtilis homologs, whereas motC and motD are new and without known precedents in other bacteria. In-frame deletions introduced in motB, motC, or motD each result in paralysis. MotD function was fully restored by complementation with the wild-type motD gene. By contrast, deletions in motB or motC required the native combination of motB and motC in trans for restoring normal flagellar rotation, whereas complementation with motB or motC alone led to uncoordinated (jiggly) swimming. Similarly, a motB-motC gene fusion and a Tn5 insertion intervening between motB and motC resulted in jiggly swimming as a consequence of large fluctuations in flagellar rotary speed. We conclude that MotC biosynthesis requires coordinate expression of motB and motC and balanced amounts of the two gene products. The MotC polypeptide contains an N-terminal signal sequence for export, and Western blots have confirmed its location in the periplasm of the R. meliloti cell. A working model suggests that interactions between MotB and MotC at the periplasmic surface of the motor control the energy flux or the energy coupling that drives flagellar rotation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC179555 | PMC |
http://dx.doi.org/10.1128/jb.179.20.6391-6399.1997 | DOI Listing |
Mol Genet Genomics
February 2011
Graduate School of Natural Science and Technology, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.
The motor proteins around the flagellar basal body consist of two cytoplasmic membrane proteins, MotA and MotB, and function as a complex that acts as the stator to generate the torque that drives rotation. Genome analysis of several Pseudomonas syringae pathovars revealed that there are two sets of genes encoding motor proteins: motAB and motCD. Deduced amino acid sequences for MotA/B and MotC/D showed homologies to the H(+)-driven stator from Escherichia coli and Na(+)-driven stator from Vibrio alginolyticus, respectively.
View Article and Find Full Text PDFJ Bacteriol
March 2006
Institut für Biochemie, Genetik und Mikrobiologie, Universität Regensburg, D-93040 Regensburg, Germany.
The flagella of the soil bacterium Sinorhizobium meliloti differ from the enterobacterial paradigm in the complex filament structure and modulation of the flagellar rotary speed. The mode of motility control in S. meliloti has a molecular corollary in two novel periplasmic motility proteins, MotC and MotE, that are present in addition to the ubiquitous MotA/MotB energizing proton channel.
View Article and Find Full Text PDFJ Bacteriol
October 2004
Department of Microbiology, The University of Iowa, Iowa City, Iowa 52242, USA.
Flagella act as semirigid helical propellers that are powered by reversible rotary motors. Two membrane proteins, MotA and MotB, function as a complex that acts as the stator and generates the torque that drives rotation. The genome sequence of Pseudomonas aeruginosa PAO1 contains dual sets of motA and motB genes, PA1460-PA1461 (motAB) and PA4954-PA4953 (motCD), as well as another gene, motY (PA3526), which is known to be required for motor function in some bacteria.
View Article and Find Full Text PDFMol Microbiol
May 2004
Lehrstuhl für Genetik, Universität Regensburg, D-93040 Regensburg, Germany.
The flagella of Sinorhizobium meliloti rotate solely clockwise and vary their rotary speed to provoke changes in the swimming path. This mode of motility control has its molecular corollary in two novel motility proteins, MotC and MotD, present in addition to the ubiquitous MotA/MotB energizing proton channel. MotC binds to the periplasmic portion of MotB, whereas MotD interacts with FliM at the cytoplasmic face of the rotor.
View Article and Find Full Text PDFJ Mol Microbiol Biotechnol
May 2002
Lehrstuhl für Genetik, Universität Regensburg, Germany.
Molecular mechanisms that govern chemotaxis and motility in the nitrogen-fixing soil bacterium, Sinorhizobium meliloti, are distinguished from the well-studied taxis systems of enterobacteria by new features. (i) In addition to six transmembrane chemotaxis receptors, S. meliloti has two cytoplasmic receptor proteins, McpY (methyl-accepting chemotaxis protein) and IcpA (internal chemotaxis protein).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!