Endo-beta-1,4-xylanase families: differences in catalytic properties.

J Biotechnol

Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia.

Published: September 1997

Microbial endo-beta-1,4-xylanases (EXs, EC 3.2.1.8) belonging to glycanase families 10 (formerly F) and 11 (formerly G) differ in their action on 4-O-methyl-D-glucurono-D-xylan and rhodymenan, a beta-1,3-beta-1,4-xylan. Two high molecular mass EXs (family 10), the Cryptococcus albidus EX and XlnA of Streptomyces lividans, liberate from glucuronoxylan aldotetrauronic acid as the shortest acidic fragment, and from rhodymenan an isomeric xylotriose of the structure Xyl beta 1-3Xyl beta 1-4Xyl as the shortest fragment containing a beta-1,3-linkage. Low molecular mass EXs (family 11), such as the Trichoderma reesei enzymes and XlnB and XlnC of S. lividans, liberate from glucuronoxylan an aldopentauronic acid as the shortest fragment, and from rhodymenan an isomeric xylotetraose as the shortest fragment containing a beta-1,3-linkage. The structure of the oligosaccharides was established by: NMR spectroscopy, mass spectrometry of per-O-methylated compounds and enzymic hydrolysis by beta-xylosidase and EX, followed by analysis of products by chromatography. The structures of the fragments define in the polysaccharides the linkages attacked and non-attacked by the enzymes. EXs of family 10 require a lower number of unsubstituted consecutive beta-1,4-xylopyranosyl units in the main chain and a lower number of consecutive beta-1,4-xylopyranosyl linkages in rhodymenan than EXs of family 11. These results, together with a greater catalytic versatility of EXs of family 10, suggest that EXs of family 10 have substrate binding sites smaller than those of EXs of family 11. This suggestion is in agreement with the finding that EXs of family 10 show higher affinity for shorter linear beta-1,4-xylooligosaccharides than EXs of family 11. The results are discussed with relevant literature data to understand better the structure-function relationship in this group of glycanases.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0168-1656(97)00096-5DOI Listing

Publication Analysis

Top Keywords

exs family
36
shortest fragment
12
exs
10
family
9
molecular mass
8
mass exs
8
lividans liberate
8
liberate glucuronoxylan
8
acid shortest
8
fragment rhodymenan
8

Similar Publications

Background: Proteins harboring the SPX domain are crucial for the regulation of phosphate (Pi) homeostasis in plants. This study aimed to identify and analyze the entire SPX gene family within the cucumber genome.

Results: The cucumber genome encompassed 16 SPX domain-containing genes, which were distributed across six chromosomes and categorized into four distinct subfamilies: SPX, SPX-MFS, SPX-EXS and SPX-RING, based on their structure characteristics.

View Article and Find Full Text PDF

Exosome-associated mitochondrial DNA in late-life depression: Implications for cognitive decline in older adults.

J Affect Disord

October 2024

Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Geriatric Psychiatry Division, Centre for Addiction and Mental Health, Toronto, ON, Canada.

Background: Disrupted cellular communication, inflammatory responses and mitochondrial dysfunction are consistently observed in late-life depression (LLD). Exosomes (EXs) mediate cellular communication by transporting molecules, including mitochondrial DNA (EX-mtDNA), playing critical role in immunoregulation alongside tumor necrosis factor (TNF). Changes in EX-mtDNA are indicators of impaired mitochondrial function and might increase vulnerability to adverse health outcomes.

View Article and Find Full Text PDF
Article Synopsis
  • * Key genes like MdSPX2, MdSPX3, and MdPHO1.5 are notably activated under low phosphate conditions, indicating their potential importance for plant resilience.
  • * Findings suggest that certain SPX proteins interact with MdPHR1, potentially playing a role in the phosphorus signaling pathway, which could inform future research on apple genetics and nutrient management.
View Article and Find Full Text PDF

Dyslipidemias involving high concentrations of low-density lipoproteins (LDLs) increase the risk of developing triple-negative breast cancer (TNBC), wherein cholesterol metabolism and protein translation initiation mechanisms have been linked with chemoresistance. Doxorubicin (Dox) treatment, a member of the anthracycline family, represents a typical therapeutic strategy; however, chemoresistance remains a significant challenge. Exosomes (Exs) secreted by tumoral cells have been implicated in cell communication pathways and chemoresistance mechanisms; the content of exosomes is an outcome of cellular cholesterol metabolism.

View Article and Find Full Text PDF

Regulatory T (TREG) cells develop via a program orchestrated by the transcription factor forkhead box protein P3 (FOXP3). Maintenance of the TREG cell lineage relies on sustained FOXP3 transcription via a mechanism involving demethylation of cytosine-phosphate-guanine (CpG)-rich elements at conserved non-coding sequences (CNS) in the FOXP3 locus. This cytosine demethylation is catalyzed by the ten-eleven translocation (TET) family of dioxygenases, and it involves a redox reaction that uses iron (Fe) as an essential cofactor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!