Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4899-1825-3_174 | DOI Listing |
Acta Pharm Sin B
December 2024
Department of Molecular and Life Science, Hanyang University, Ansan 15588, Republic of Korea.
The pathophysiology of sepsis is characterized by a systemic inflammatory response to infection; however, the cytokine blockade that targets a specific early inflammatory mediator, such as tumor necrosis factor, has shown disappointing results in clinical trials. During sepsis, excessive endotoxins are internalized into the cytoplasm of immune cells, resulting in dysregulated pyroptotic cell death, which induces the leakage of late mediator alarmins such as HMGB1 and PTX3. As late mediators of lethal sepsis, overwhelming amounts of alarmins bind to high-affinity TLR4/MD2 and low-affinity RAGE receptors, thereby amplifying inflammation during early-stage sepsis.
View Article and Find Full Text PDF( ) is the world's most deadly infectious pathogen and new drugs are urgently required to combat the emergence of multi-(MDR) and extensively-(XDR) drug resistant strains. The bacterium specifically upregulates sterol uptake pathways in infected macrophages and the metabolism of host-derived cholesterol is essential for long-term survival Here, we report the development of antitubercular small molecules that inhibit the cholesterol oxidases CYP125 and CYP142, which catalyze the initial step of cholesterol metabolism. An efficient biophysical fragment screen was used to characterize the structure-activity relationships of CYP125 and CYP142, and identify a non-azole small molecule that can bind to the heme cofactor of both enzymes.
View Article and Find Full Text PDFAm J Hum Genet
January 2025
Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany; Institute of Clinical Human Genetics, University Hospital Regensburg, 93053 Regensburg, Germany. Electronic address:
BCL11B is a Cys2-His2 zinc-finger (C2H2-ZnF) domain-containing, DNA-binding, transcription factor with established roles in the development of various organs and tissues, primarily the immune and nervous systems. BCL11B germline variants have been associated with a variety of developmental syndromes. However, genotype-phenotype correlations along with pathophysiologic mechanisms of selected variants mostly remain elusive.
View Article and Find Full Text PDFBiotechnol Appl Biochem
January 2025
Department of Anatomy, College of Medicine, King Khalid University, Abha, Saudi Arabia.
Dual inhibition of Akt and MEK1 pathways offers a promising strategy to enhance treatment efficacy in gastric cancer. In this study, we employed computational approaches followed by in vitro validations. Our results demonstrate that SBL-027 exhibits robust and enduring interactions with Akt and MEK1 kinases, as evidenced by atomistic molecular dynamics simulations and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) based binding free energy estimates.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Cell and Molecular Biology, Biomedical Center, Uppsala University, Box 596, Uppsala SE-75124, Sweden.
Adenosine receptors, particularly AAR, are gaining attention for their role in pathological conditions such as cancer immunotherapy, prompting the exploration for promising therapeutic applications. Despite numerous selective AAR antagonists, the lack of selective full agonists makes the partial agonist BAY60-6583 one of the most interesting activators of this receptor. Recent cryo-EM structures have univocally revealed the binding mode of nonselective ribosidic agonists such as adenosine and its derivative NECA to AAR; however, two independent structures with BAY60-6583 show alternative binding orientations, raising the question of which is the physiologically relevant binding mode.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!