Cell attachment to, and contraction of, the retina in vitro.

Invest Ophthalmol Vis Sci

Department of Ophthalmology, Manchester Royal Eye Hospital, United Kingdom.

Published: September 1997

Purpose: To examine the behavior of fibroblasts and retinal pigment epithelial cells after attachment to the retinal surface in vitro to elucidate the pathobiology of the early stages of epiretinal membrane formation.

Methods: Human retinal pigment epithelial (HRPE) cells and bovine Tenon's capsule fibroblasts (BTFs) were seeded onto the surface of bovine retinal explants maintained in organ culture. The changes induced in the underlying retina, including contraction, were assessed during a period of up to 10 days. Immunohistochemistry was used to assess proliferation of the seeded cells and to determine deposition of extracellular matrix.

Results: Explants of bovine neuroretina were maintained in organ culture, with good morphologic preservation of the inner limiting lamina and inner retinal layers, for 7 to 10 days. The HRPE cells and the BTFs attached to the retinal surface and exerted tractional forces, producing partial- and full-thickness retinal folding. Contraction commenced within 24 hours of attachment of the cells and continued for several days, with most of the contraction occurring within the next 48 to 72 hours. The HRPE cells and BTFs were found to be equally contractile. Deposition of cellular fibronectin (but not collagen type I) was demonstrated.

Conclusions: The contractile cellular membranes generated in this organ culture system exhibit many of the morphologic and functional features of epiretinal membranes found in the early stages of proliferative vitreoretinopathy.

Download full-text PDF

Source

Publication Analysis

Top Keywords

hrpe cells
12
organ culture
12
retinal pigment
8
pigment epithelial
8
retinal surface
8
early stages
8
maintained organ
8
cells btfs
8
retinal
7
cells
6

Similar Publications

Article Synopsis
  • Regulation of visual system function relies on precise gene regulation, with dysregulation of miRNAs like MIR-96 linked to eye disorders, including diabetic retinopathy (DR) and glaucoma.
  • MIR-96, found in the retina, affects inflammatory and insulin signaling pathways and its role in gene expression was studied by overexpressing it in human retinal pigment epithelial cells, revealing varying effects on target gene expression.
  • The results indicated that changes in the expression of IRS2, a key gene, are connected to disrupted retinal insulin signaling in DR, suggesting that the IRS/PI3K/AKT/VEGF pathway could be a potential treatment target for diabetic complications in the eye.
View Article and Find Full Text PDF

Tenascin-C induces transdifferentiation of retinal pigment epithelial cells in proliferative vitreoretinopathy.

Exp Eye Res

November 2024

Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi Medical Center, Nanjing Medical University, Wuxi People's Hospital, 299 Qingyang Road, Wuxi, Jiangsu. 214023, People's Republic of China. Electronic address:

Proliferation and transdifferentiation of the retinal pigment epithelium (RPE) are hallmarks of proliferative vitreoretinopathy (PVR); however, the critical regulators of this process remain to be elucidated. Here, we investigated the role of tenascin-C in PVR development. In vitro, exposure of human ARPE-19 (hRPE) cells to TGF-β2 increased tenascin-C expression.

View Article and Find Full Text PDF

Age-related macular degeneration (AMD) causes severe blindness in the elderly due to choroidal neovascularization (CNV), which results from the dysfunction of the retinal pigment epithelium (RPE). While normal RPE depends exclusively on mitochondrial oxidative phosphorylation for energy production, the inflammatory conditions associated with metabolic reprogramming of the RPE play a pivotal role in CNV. Although mitochondrial pyruvate dehydrogenase kinase (PDK) is a central node of energy metabolism, its role in the development of CNV in neovascular AMD has not been investigated.

View Article and Find Full Text PDF

Purpose: To investigate the short-term effects of low-level lasers (LLLs; also known as low-power laser therapy) on the structure, genetic, and phenotype of cultured human retinal pigment epithelial (hRPE) cells from both adult and neonatal sources.

Methods: Cultivated adult and neonatal hRPE cells were irradiated with two types of LLL (630 nm and 780 nm), 1 min daily for five consecutive days.

Results: An increase in doubling time was observed in 630 nm-irradiated adult hRPE cells ( = 0.

View Article and Find Full Text PDF

Aim: To examine the regulatory role of microRNA-204 (miR-204) on silent information regulator 1 (SIRT1) and vascular endothelial growth factor (VEGF) under high-glucose-induced metabolic memory in human retinal pigment epithelial (hRPE) cells.

Methods: Cells were cultured with either normal (5 mmol/L) or high D-glucose (25 mmol/L) concentrations for 8d to establish control and high-glucose groups, respectively. To induce metabolic memory, cells were cultured with 25 mmol/L D-glucose for 4d followed by culture with 5 mmol/L D-glucose for 4d.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!