In 1994, a study of nickel release and allergic contact dermatitis from nickel-plated metals and stainless steels was published in this journal. It was shown that low-sulfur stainless steel grades like AISI 304, 316L or 430 (S < or = 0.007%) release less than 0.03 microgram/cm2/week of nickel in acid artificial sweat and elicit no reactions in patients already sensitized to nickel. In contrast, nickel-plated samples release around 100 micrograms/cm2/week of Ni and high-sulfur stainless steel (AISI 303-S approximately 0.3%) releases about 1.5 micrograms/cm2/week in this acid artificial sweat. Applied on patients sensitized to nickel, these metals elicit positive reactions in 96% and 14%, respectively, of the patients. The main conclusion was that low-sulfur stainless steels like AISI 304, 316L or 430, even when containing Ni, should not elicit nickel contact dermatitis, while metals having a mean corrosion resistance like a high-sulfur stainless steel (AISI 303) or nickel-plated steel should be avoided. The determining characteristic was in fact the corrosion resistance in chloride media, which, for stainless steels, is connected, among other factors, to the sulfur content. Thus, a question remained concerning the grades with an intermediate sulfur content, around 0.03%, which were not studied. They are the object of the study presented in this paper. 3 tests were performed: leaching experiments, dimethylglyoxime and HNO3 spot tests, and clinical patch tests; however, only stainless steels were tested: a low-sulfur AISI 304 and AISI 303 as references and 3 grades with a sulfur content around 0.03%: AISI 304L, AISI 304L added with Ca, AISI 304L+Cu. Leaching experiments showed that the 4 non-resulfurised grades released less than 0.5 microgram/cm2/week in acid sweat while the reulfurized AISI 303 released around or more than 0.5 microgram/cm2/week. This is explained by the poorer corrosion resistance of the resulfurized grade. Yet all these grades had the same reaction to the DMG test (negative result), which shows again its lack of sensitivity. In contrast, the HNO3 spot test distinguished AISI 303 from the non-resulfurized grades. Clinical patch tests again showed that some patients (4%) were intolerant to AISI 303, while none were intolerant to the other grades. Thus, this study confirms that non-resulfurized stainless steels (S < or = 0.03%) like Ni-containing 304 and 304L should not elicit Ni contact dermatitis, while the resulfurized grades (S > 0.1%) should be avoided.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1600-0536.1997.tb00314.xDOI Listing

Publication Analysis

Top Keywords

stainless steels
24
aisi 303
20
contact dermatitis
12
stainless steel
12
aisi
12
aisi 304
12
corrosion resistance
12
sulfur content
12
stainless
9
nickel release
8

Similar Publications

The focus on energy efficiency to move towards a more sustainable use of resources has intensified efforts to minimize friction and wear in mechanical systems, which account for 23% of the world's energy consumption. In this study, polyoxometalate ionic liquids (POM-ILs) are introduced as environmentally acceptable lubricant additives, for their potential friction-reducing and anti-wear (AW) properties. These compounds, characterized by their complex structures and tunable properties, have been investigated for their tribological performance across base fluids of varying polarities.

View Article and Find Full Text PDF

Quantitative Assessment of Microbial Transmission onto Environmental Surfaces Using Thermoresponsive Gelatin Hydrogels as a Finger Mimetic under In Situ-Mimicking Conditions.

Adv Healthc Mater

January 2025

Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials and Technology, Lerchenfeldstrasse 5, St. Gallen, 9014, Switzerland.

Surface-mediated transmission of pathogens plays a key role in healthcare-associated infections. However, proper techniques for its quantitative analysis are lacking, making it challenging to develop novel antimicrobial and anti-fouling surfaces to reduce pathogen spread via environmental surfaces. This study demonstrates a gelatin hydrogel-based touch transfer test, the HydroTouch test, to evaluate pathogen transmission on high-touch surfaces under semi-dry conditions.

View Article and Find Full Text PDF

Three types of commercial austenitic stainless steels, 1.4307 (AISI 304 L), 1.4404 (AISI 316 L) 1.

View Article and Find Full Text PDF

A novel appliance for Class II dentoalveolar correction.

J Orthod

January 2025

Private Practice, Jerusalem, Israel.

In recent years, a segmental approach to Class II correction has gained popularity among orthodontists. This concept is best represented by the Carrière Motion 3D™ Class II Appliance (CMA), which is an efficient and effective appliance for the treatment of Class II malocclusions. Although it is original and innovative, it also has some inherent flaws that can potentially interfere with its daily use.

View Article and Find Full Text PDF

A bimetallic organic framework (CuNi-MOF) was synthesized as a corrosion inhibitor using the solvothermal method. The effectiveness of the inhibitor in corrosion prevention of AISI 304 and 316 in 1N hydrochloric acid solution at room temperature was evaluated using weight loss measurements, electrochemical methods, and surface characterization techniques. The formation of CuNi-MOF protective layer on the stainless-steel surface was confirmed through Field Emission Scanning Electron Microscopes (FESEM), Energy Dispersive Spectroscopy (EDS), and X-Ray Diffraction (XRD) analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!