Increased stress response and beta-phenylethylamine in MAOB-deficient mice.

Nat Genet

Department of Molecular Pharmacology and Toxicology, School of Pharmacy, University of Southern California, Los Angeles 90033, USA.

Published: October 1997

MAOA and MAOB are key iso-enzymes that degrade biogenic and dietary amines. MAOA preferentially oxidizes serotonin (5-hydroxytryptamine, or 5-HT) and norepinephrine (NE), whereas MAOB preferentially oxidizes beta-phenylethylamine (PEA). Both forms can oxidize dopamine (DA). A mutation in MAOA results in a clinical phenotype characterized by borderline mental retardation and impaired impulse control. X-chromosomal deletions which include MAOB were found in patients suffering from atypical Norrie's disease, which is characterized by blindness and impaired hearing. Reduced MAOB activity has been found in type-II alcoholism and in cigarette smokers. Because most alcoholics smoke, the effects of alcohol on MAOB activity remain to be determined. Here we show that targetted inactivation of MAOB in mice increases levels of PEA but not those of 5-HT, NE and DA, demonstrating a primary role for MAOB in the metabolism of PEA. PEA has been implicated in modulating mood and affect. Indeed, MAOB-deficient mice showed an increased reactivity to stress. In addition, mutant mice were resistant to the neurodegenerative effects of MPTP, a toxin that induces a condition reminiscent of Parkinson's disease.

Download full-text PDF

Source
http://dx.doi.org/10.1038/ng1097-206DOI Listing

Publication Analysis

Top Keywords

maob-deficient mice
8
preferentially oxidizes
8
maob activity
8
maob
7
increased stress
4
stress response
4
response beta-phenylethylamine
4
beta-phenylethylamine maob-deficient
4
mice
4
mice maoa
4

Similar Publications

From aggression to autism: new perspectives on the behavioral sequelae of monoamine oxidase deficiency.

J Neural Transm (Vienna)

November 2018

Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA.

The two monoamine oxidase (MAO) enzymes, A and B, catalyze the metabolism of monoamine neurotransmitters, such as serotonin, norepinephrine, and dopamine. The phenotypic outcomes of MAO congenital deficiency have been studied in humans and animal models, to explore the role of these enzymes in behavioral regulation. The clinical condition caused by MAOA deficiency, Brunner syndrome, was first described as a disorder characterized by overt antisocial and aggressive conduct.

View Article and Find Full Text PDF

Monoamine oxidase A and B (MAOA and MAOB) play key roles in deaminating neurotransmitters and various other biogenic amines. Patients deficient in one or both enzymes have distinct metabolic and neurologic profiles. MAOB deficient patients exhibit normal clinical characteristics and behavior, while MAOA deficient patients have borderline intellectual deficiency and impaired impulse control.

View Article and Find Full Text PDF

Cerebral cortical blood flow (CBF) was measured autoradiographically in conscious mice without the monoamine oxidase B (MAOB) gene (KO, n=11) and the corresponding wild-type animals (WILD, n=11). Subgroups of animals of each genotype received a continuous intravenous infusion over 30 min of phenylethylamine (PEA), an endogenous substrate of MAOB, (8 nmol g-1 min-1 in normal saline at a volume rate of 0.11 microl g-1 min-1) or saline at the same volume rate.

View Article and Find Full Text PDF

Increased stress response and beta-phenylethylamine in MAOB-deficient mice.

Nat Genet

October 1997

Department of Molecular Pharmacology and Toxicology, School of Pharmacy, University of Southern California, Los Angeles 90033, USA.

MAOA and MAOB are key iso-enzymes that degrade biogenic and dietary amines. MAOA preferentially oxidizes serotonin (5-hydroxytryptamine, or 5-HT) and norepinephrine (NE), whereas MAOB preferentially oxidizes beta-phenylethylamine (PEA). Both forms can oxidize dopamine (DA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!