Amino-terminal analysis of tryptophan hydroxylase: protein kinase phosphorylation occurs at serine-58.

J Neurochem

Department of Physiology and Pharmacology and Center for the Neurobiological Investigation of Drug Abuse, Bowman Gray School of Medicine, Wake Forest University, Winston-Salem, North Carolina 27157-1083, U.S.A.

Published: October 1997

Tryptophan hydroxylase (TPH) catalyzes the rate-limiting and committed step in serotonin biosynthesis. Within this enzyme, two distinct domains have been hypothesized to exist, an amino-terminal regulatory domain and a carboxyl-terminal catalytic domain. In the present experiments, the functional boundary between the putative domains was defined using deletion mutagenesis. A full-length cDNA clone for rabbit TPH was engineered for expression in bacteria. Five amino-terminal deletions were constructed using PCR, i.e., Ndelta50, Ndelta60, Ndelta90, Ndelta106, and Ndelta116 (referring to the number of amino acids deleted from the amino terminus). Enzymatic activity was determined for each mutant after expression in bacteria. Whereas deletion of 116 amino acids (Ndelta116) abolished enzyme activity, all of the other amino-terminal deletions exhibited increased specific activity relative to the recombinant wild-type TPH. The ability of the cyclic AMP-dependent protein kinase (PKA) to phosphorylate members of the deletion series was also examined. Deletion of the first 60 amino-terminal residues abolished the ability of the enzyme to serve as a substrate for PKA, yet the native and Ndelta50 enzymes were phosphorylated. Moreover, a serine-58 point mutant (S58A) was not phosphorylated by PKA. In conclusion, the first 106 amino acids comprise a regulatory domain that is phosphorylated by PKA at serine-58. In addition, the boundary between regulatory and catalytic domains is analogous to the domain structure observed for the related enzyme tyrosine hydroxylase.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1471-4159.1997.69041738.xDOI Listing

Publication Analysis

Top Keywords

amino acids
12
tryptophan hydroxylase
8
protein kinase
8
regulatory domain
8
expression bacteria
8
amino-terminal deletions
8
phosphorylated pka
8
amino-terminal
5
amino-terminal analysis
4
analysis tryptophan
4

Similar Publications

This study investigated the effects of non-thermal atmospheric plasma (NTAP) treatment on the growth, chemical composition, and biological activity of geranium (Pelargonium graveolens L'Herit) leaves. NTAP was applied at a frequency of 13.56 MHz, exposure time of 15 s, discharge temperature of 25 °C, and power levels (T1 = 50, T2 = 80, and T3 = 120 W).

View Article and Find Full Text PDF

Arginine metabolism in myeloid cells in health and disease.

Semin Immunopathol

January 2025

Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.

Metabolic flexibility is key for the function of myeloid cells. Arginine metabolism is integral to the regulation of myeloid cell responses. Nitric oxide (NO) production from arginine is vital for the antimicrobial and pro-inflammatory responses.

View Article and Find Full Text PDF

Background: Arginine infusion stimulates copeptin secretion, a surrogate marker of arginine vasopressin (AVP), thereby serving as a diagnostic test in the differential diagnosis of suspected AVP deficiency (AVP-D). Yet, the precise mechanism underlying the stimulatory effect of arginine on the vasopressinergic system remains elusive. Arginine plays a significant role in the urea cycle and increases the production of urea.

View Article and Find Full Text PDF

Metabolic profiles of meconium in preeclamptic and normotensive pregnancies.

Metabolomics

January 2025

Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.

Introduction: Preeclampsia (PE) is a common vascular pregnancy disorder affecting maternal and fetal metabolism with severe immediate and long-term consequences in mothers and infants. During pregnancy, metabolites in the maternal circulation pass through the placenta to the fetus. Meconium, a first stool of the neonate, offers a view to maternal and fetoplacental unit metabolism and could add to knowledge on the effects of PE on the fetus and newborn.

View Article and Find Full Text PDF

Background: Gestational exposure to non-persistent endocrine-disrupting chemicals (EDCs) may be associated with adverse pregnancy outcomes. While many EDCs affect the endocrine system, their effects on endocrine-related metabolic pathways remain unclear. This study aims to explore the global metabolome changes associated with EDC biomarkers at delivery.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!