The same set of stimuli and analytic methods that was used to study the dynamics of horizontal cells () was applied to a study of the response dynamics and signal processing in amacrine cells in the retina of the kissing gourami, Helostoma rudolfi. The retina contains two major classes of amacrine cells that could be identified from their morphology: C and N amacrine cells. C amacrine cells had a two-layered dendritic field, whereas N cells had a monolayered dendritic field. Both types of amacrine cell were tracer-coupled but coupling was more extensive in the N amacrine cells. Responses from C amacrine cells lacked a DC component and had a small linear component that was <10% in terms of mean square error (MSE); the second-order component often accounted for >50% of the modulation response. The C amacrine cells did not show any characteristic color coding under any stimulus condition. Most responses of N cells to a pulsatile stimulus consisted of a series of depolarizing transient potentials and steady illumination did not generate any DC potential in these cells. The response to a white-noise modulated input was composed of well-defined first- and second-order components and, possibly, higher-order components. The response evoked by a red or green white-noise-modulated stimulus given alone was not color coded. Modulated red illumination in the presence of a green illumination elicited a color-coded response from >70% of N amacrine cells. Color information was carried not only by the polarity but also by the dynamics of the first-order component. No convincing evidence was obtained to indicate that the second-order component might be involved in color processing. Some N amacrine cells produced a well-defined (second-order) interaction kernel to show that the temporal sequence of red and green stimuli was a parameter to be considered. In a complex cell such as an amacrine cell, responses evoked by a pulsatile stimulus given in darkness and by modulation of a mean luminance could be very different in terms of their characteristics. It was not always possible to predict the response evoked by one stimulus from observing the cell's response to another stimulus. This is because, in N cells, a flash-evoked (nonsteady state) response is composed largely of nonlinear components whereas a modulation (steady state) response is composed of linear as well as nonlinear components.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/jn.1997.78.4.2018 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!