Molecular and functional evidence for multiple Ca2+-binding domains in the type 1 inositol 1,4,5-trisphosphate receptor.

J Biol Chem

Laboratorium voor Fysiologie, K. U. Leuven Campus Gasthuisberg O/N, Herestraat 49, B-3000 Leuven, Belgium.

Published: October 1997

Structural and functional analyses were used to investigate the regulation of the inositol 1,4,5-trisphosphate (InsP3) receptor (InsP3R) by Ca2+. To define the structural determinants for Ca2+ binding, cDNAs encoding GST fusion proteins that covered the complete linear cytosolic sequence of the InsP3R-1 were expressed in bacteria. The fusion proteins were screened for Ca2+ and ruthenium red binding through the use of 45Ca2+ and ruthenium red overlay procedures. Six new cytosolic Ca2+-binding regions were detected on the InsP3R in addition to the one described earlier (Sienaert, I., De Smedt, H., Parys, J. B., Missiaen, L., Vanlingen, S., Sipma, H., and Casteels, R. (1996) J. Biol. Chem. 271, 27005-27012). Strong 45Ca2+ and ruthenium red binding domains were localized in the N-terminal region of the InsP3R as follows: two Ca2+-binding domains were located within the InsP3-binding domain, and three Ca2+ binding stretches were localized in a 500-amino acid region just downstream of the InsP3-binding domain. A sixth Ca2+-binding stretch was detected in the proximity of the calmodulin-binding domain. Evidence for the involvement of multiple Ca2+-binding sites in the regulation of the InsP3R was obtained from functional studies on permeabilized A7r5 cells, in which we characterized the effects of Ca2+ and Sr2+ on the EC50 and cooperativity of the InsP3-induced Ca2+ release. The activation by cytosolic Ca2+ was due to a shift in EC50 toward lower InsP3 concentrations, and this effect was mimicked by Sr2+. The inhibition by cytosolic Ca2+ was caused by a decrease in cooperativity and by a shift in EC50 toward higher InsP3 concentrations. The effect on the cooperativity occurred at lower Ca2+ concentrations than the inhibitory effect on the EC50. In addition, Sr2+ mimicked the effect of Ca2+ on the cooperativity but not the inhibitory effect on the EC50. The different [Ca2+] and [Sr2+] dependencies suggest that three different cytosolic interaction sites were involved. Luminal Ca2+ stimulated the release without affecting the Hill coefficient or the EC50, excluding the involvement of one of the cytosolic Ca2+-binding sites. We conclude that multiple Ca2+-binding sites are localized on the InsP3R-1 and that at least four different Ca2+-interaction sites may be involved in the complex feedback regulation of the release by Ca2+.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.272.41.25899DOI Listing

Publication Analysis

Top Keywords

multiple ca2+-binding
12
ca2+
12
ruthenium red
12
ca2+-binding sites
12
ca2+-binding domains
8
inositol 145-trisphosphate
8
ca2+ binding
8
fusion proteins
8
red binding
8
45ca2+ ruthenium
8

Similar Publications

Background: While the formation of β-amyloid plaques and neurofibrillary "tau" tangles are considered hallmarks of AD pathology, therapeutic targeting of these pathways has been unsuccessful, highlighting the necessity to define the underlying molecular mechanisms driving AD progression. Previous studies from our lab demonstrated that mitochondrial calcium (Ca) overload through neuronal ablation of the mitochondrial Na/Ca exchanger (NCLX) is sufficient to trigger 'AD-like' pathology, including mitochondrial dysfunction, amyloid deposition and tau pathology, and cognitive decline. In addition, we found significant proteomic remodeling of components of the mitochondrial calcium uniporter channel (mtCU), the primary mediator of Ca uptake, in frontal cortex samples isolated post-mortem from patients diagnosed with non-familial/sporadic AD.

View Article and Find Full Text PDF

Developing Topics.

Alzheimers Dement

December 2024

University of Kentucky College of Medicine, Sanders-Brown Center on Aging, Lexington, KY, USA.

Background: Our lab recently developed 2 mouse monoclonal antibodies that preferentially react with "distressed astrocytes". One monoclonal, 26A6, was found to react preferentially with a form of the Ca2+/calmodulin-dependent protein phosphatase, calcineurin (CN), that has been cleaved by calpain, to generate a 48 kDa CN fragment (∆CN). We recently published a characterization of this antibody.

View Article and Find Full Text PDF
Article Synopsis
  • Single cell calcium (Ca) imaging, utilizing microscopy and the Fura-2/AM indicator, is crucial for studying Ca channels activated by various stimuli.
  • When Fura-2/AM enters cells, it is converted to Fura-2, which binds calcium and shows a measurable change in fluorescence based on calcium concentration.
  • This method allows for real-time monitoring of Ca changes across multiple cells, facilitating efficient data analysis and improving understanding of calcium signaling in cells.
View Article and Find Full Text PDF

Nobiletin: a potential erythropoietin receptor activator protects renal cells against hypoxia.

Apoptosis

January 2025

Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, China.

Tangerine peel is a traditional Chinese herb and has been widely applied in foods and medicine for its multiple pharmacological effects. Erythropoietin receptor (EPOR), a member of the cytokine receptor family, is widely expressed in multiple tissues in especial kidney and plays protective effects in adverse physiological and pathological conditions. We hypothesized that it might be EPOR agonists existing in Tangerine peel bring such renal benefits.

View Article and Find Full Text PDF

Titin is the third contractile filament in the sarcomere, and it plays a critical role in sarcomere integrity and both passive and active tension. Unlike the thick and thin filaments, which are polymers of myosin and actin, respectively, titin is a single protein that spans from Z-disk to M-line. The N2A region within titin has been identified as a signaling hub for the muscle and is shown to be involved in multiple interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!