The dopamine D1 receptor has recently been identified in the rat heart and kidney. In the present study, using Western blot analysis and light microscopic immunohistochemistry, we examined D1 receptor protein expression in the human kidney and heart. Antipeptide polyclonal rabbit antiserum was raised against the third extracellular domain of the native receptor and affinity-purified using a protein-A column. Selectivity of the antiserum was validated by recognition of the D1 receptor expressed in stably transfected LTK- cells and Sf-9 cells. The immunohistochemical staining for D1 receptor protein was distributed throughout the atrium and ventricular myocardium and in the coronary vessels. In the kidney, positive immunoreactive signal was detected in the proximal and distal tubules, the collecting ducts, and the large intrarenal vasculature, whereas staining was absent in the juxtaglomerular (JG) cells and the glomeruli. D1 receptor antiserum preadsorbed against the immunizing peptide did not produce significant staining. In Western blot analysis, a single 55-kD band was detected for the D1 receptor in membranes from the D1 receptor transfected Sf-9 cells but not in nontransfected cells. In the heart and kidney, we detected a 55-kD band as well as an additional 40-kD band, which may reflect partial degradation of the receptor protein. These results provide the first evidence for the localization of the dopamine D1 receptor protein in the human heart and kidney. The similar distribution of this subtype receptor in the human heart and kidney to that in the rat supports the possible (patho)physiological significance of the peripheral dopamine system in humans.

Download full-text PDF

Source
http://dx.doi.org/10.1161/01.hyp.30.3.725DOI Listing

Publication Analysis

Top Keywords

receptor protein
20
heart kidney
20
receptor
12
dopamine receptor
12
human heart
12
localization dopamine
8
protein human
8
western blot
8
blot analysis
8
sf-9 cells
8

Similar Publications

Oxidative stress and neuronal apoptosis could be an important factor leading to post-hemorrhagic consequences after germinal matrix hemorrhage (GMH). Previously study have indicated that relaxin 2 receptor activation initiates anti-oxidative stress and anti-apoptosis in ischemia-reperfusion injury. However, whether relaxin 2 activation can attenuate oxidative stress and neuronal apoptosis after GMH remains unknown.

View Article and Find Full Text PDF

Genome-wide association studies are enriched for interacting genes.

BioData Min

January 2025

The Department of Computational Biomedicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90069, USA.

Background: With recent advances in single cell technology, high-throughput methods provide unique insight into disease mechanisms and more importantly, cell type origin. Here, we used multi-omics data to understand how genetic variants from genome-wide association studies influence development of disease. We show in principle how to use genetic algorithms with normal, matching pairs of single-nucleus RNA- and ATAC-seq, genome annotations, and protein-protein interaction data to describe the genes and cell types collectively and their contribution to increased risk.

View Article and Find Full Text PDF

The endonuclease activity of MCPIP1 controls the neoplastic transformation of epithelial cells via the c-Met/CD44 axis.

Cell Commun Signal

January 2025

Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.

The RNase activity of MCPIP1 is essential for regulating cellular homeostasis, proliferation, and tumorigenesis. Our study elucidates the effects of downregulation of MCPIP1 expression and an RNase-inactivating mutation (D141N) on normal epithelial kidney cells, indicating that MCPIP1 expression is a key factor that suppresses neoplastic transformation. We observed that either expression downregulation or mutation of MCPIP1 significantly increased its clonogenicity and altered the expression of cancer stem cell (CSC) markers and factors involved in epithelial-to-mesenchymal transition (EMT).

View Article and Find Full Text PDF

Lipid-encapsulated gold nanoparticles: an advanced strategy for attenuating the inflammatory response in SARS-CoV-2 infection.

J Nanobiotechnology

January 2025

Graduate School of Biotechnology, and College of Life Science, Kyung Hee University, Yongin-Si, 17104, Gyeonggi-Do, Republic of Korea.

Background: Nanodrugs play a crucial role in biomedical applications by enhancing drug delivery. To address safety and toxicity concerns associated with nanoparticles, lipid-nanocarrier-based drug delivery systems have emerged as a promising approach for developing next-generation smart nanomedicines. Ginseng has traditionally been used for various therapeutic purposes, including antiviral activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!