Exposure to heat stress leads to both short-term and long-term effects on morbidity. Male rats were exposed to a high ambient temperature of 40 degrees C, which resulted in biotelemetered core body temperature rising to approximately 42 degrees C. This treatment led to a marked enhancement in lipopolysaccharide (LPS)-induced fever at 24 h after exposure to heat stress. The increase in fever was accompanied by a significant suppression in the circulating concentration of tumor necrosis factor. Heat-shock protein-70 measured in liver was elevated by the heat exposure (but not further elevated by the injection of LPS). An enhanced fever to LPS and other inflammatory stimuli found in heat-stressed human subjects could explain the apparent increase in susceptibility to disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpregu.1997.273.3.R858 | DOI Listing |
Trop Anim Health Prod
January 2025
School of Molecular Diagnostics, Prophylaxis, and Nanobiotechnology, ICAR- Indian Institute of Agricultural Biotechnology, Garkhtanga, Ranchi, 834003, Jharkhand, India.
Climate change poses significant challenges to livestock production worldwide. Wherein, it affects communities in developing nations primarily dependent on agriculture and animal husbandry. Its direct and indirect deleterious effects on agriculture and animal husbandry includes aberrant changes in weather patterns resulting in disturbed homeorhetic mechanism of livestock vis a vis indirectly affecting nutrient composition of feed and fodder.
View Article and Find Full Text PDFAdv Mater
January 2025
Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK.
Thick metamorphic buffers are considered indispensable for III-V semiconductor heteroepitaxy on large lattice and thermal-expansion mismatched silicon substrates. However, III-nitride buffers in conventional GaN-on-Si high electron mobility transistors (HEMT) impose a substantial thermal resistance, deteriorating device efficiency and lifetime by throttling heat extraction. To circumvent this, a systematic methodology for the direct growth of GaN after the AlN nucleation layer on six-inch silicon substrates is demonstrated using metal-organic vapor phase epitaxy (MOVPE).
View Article and Find Full Text PDFFront Vet Sci
January 2025
Research Group in Bioclimatology, Ethology and Animal Welfare (BioEt), Department of Animal Science, Federal University of Paraiba, Areia, Paraiba, Brazil.
Japanese quails () are sensitive to zinc (Zn) deficiency, a mineral essential for growth, development, and bone health. This study evaluated the effects of different levels of Zn in the diet on zootechnical performance, organ and carcass weight, and tibial breakage resistance in quails from 1 to 42 days of age. A 5 × 2 factorial design was used, consisting of five Zn levels (30, 60, 90, 120, and 150 mg/kg) and two thermal environments (thermal comfort and heat stress), with five replicates of 10 birds per treatment.
View Article and Find Full Text PDFTransl Anim Sci
November 2024
Department of Animal Sciences, Greensboro, NC, 27411, USA.
Heat stress (HS) poses a significant challenge to the United States swine industry. Sows and their piglets are particularly vulnerable to HS, as the periparturient phase is characterized by heightened metabolism and increased oxidative stress and inflammation. The study examined the effects of using conductive electronic cooling pads (ECP) and dietary supplementation with 4% Moringa (M) leaf powder on controlling oxidative stress and inflammation caused by HS in sows and their piglets.
View Article and Find Full Text PDFPlant Biotechnol J
January 2025
Center for Plant Water-use and Nutrition Regulation and College of JunCao Science and Ecology, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China.
Heat stress significantly impacts global rice production, highlighting the critical need to understand the genetic basis of heat resistance in rice. U2AF (U2 snRNP auxiliary factor) is an essential splicing complex with critical roles in recognizing the 3'-splice site of precursor messenger RNAs (pre-mRNAs). The U2AF small subunit (U2AF35) can bind to the 3'-AG intron border and promote U2 snRNP binding to the branch-point sequences of introns through interaction with the U2AF large subunit (U2AF65).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!