During moderate reductions of blood flow, the myocardium downregulates contractile function and ATP utilization to result in reduced but stable ATP levels, recovery or stability of (reduced) creatine phosphate (CP), and preservation of myocyte viability. The intent of this study was to determine the influence of the level of ischemic blood flow and the major determinants of myocardial O2 consumption (MVO2) (heart rate and systolic blood pressure) on recovery of CP during prolonged moderate myocardial hypoperfusion. 31P-nuclear magnetic resonance spectroscopy was used to measure CP, ATP, and Pi in the subepicardium (Epi) and subendocardium (Endo) of 13 open-chest dogs. Wall thickening was measured with sonomicrometry. A coronary stenosis reduced mean myocardial blood flow (microspheres) from 1.10 +/- 0.07 to 0.71 +/- 0.06 ml.g-1.min-1 (P < 0.01) and the Endo-to-Epi blood flow ratio from 1.12 +/- 0.07 to 0.59 +/- 0.06 (P < 0.01), and dyskinesis developed. Coronary blood flow and systolic wall thickening did not change significantly during 4 h of hypoperfusion. Epi CP and ATP fell to 80 +/- 4% (P < 0.05) and 93 +/- 3% of control, respectively, at 30 min. Epi CP then recovered to 87 +/- 5% while ATP decreased further to 83 +/- 5% of baseline by the end of the 240-min ischemic period. Endo CP and ATP fell to 53 +/- 4 and 77 +/- 5% of control, respectively, at 30 min; then Endo CP recovered to 85 +/- 6% while ATP decreased further to 68 +/- 6% of baseline at 240 min of hypoperfusion. ADP levels were significantly increased at 30 min but recovered to baseline by 240 min of hypoperfusion. delta Pi/CP increased significantly (Endo > Epi) at the onset of ischemia and then progressively decreased. At 30 min, mild myocardial acidosis was observed in some hearts with variable pH recovery during continuing hypoperfusion. The data demonstrate that variations in blood flow cannot account for the magnitude of the initial fall in CP or for the final extent of recovery. However, the rate at which CP recovered was significantly correlated with the level of blood flow. Variations in the determinants of MVO2 did not account for differences in CP recovery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajpheart.1997.273.3.H1452 | DOI Listing |
Trends Biotechnol
January 2025
Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands. Electronic address:
Human brain organoids (hBOs) are in vitro, 3D, self-organizing brain tissue structures increasingly used for modeling brain development and disease. Although they traditionally lack vasculature, recent bioengineering developments enable their vascularization, which partly recapitulates neurodevelopmental processes such as neural tube angiogenesis, formation of neurovascular unit (NVU)-like structures, and early barriergenesis. Although vascularized hBOs (vhBOs) are already used to model (defects in) neurovascular development, vascularization efficiency and other outcomes differ substantially between vascularization protocols and overall shortcomings should be considered.
View Article and Find Full Text PDFNeuroimage
January 2025
Department of Radiology, Mayo Clinic, Rochester, MN, USA. Electronic address:
Cardiorespiratory signals have long been treated as "noise" in functional magnetic resonance imaging (fMRI) research, with the goal of minimizing their impact to isolate neural activity. However, there is a growing recognition that these signals, once seen as confounding variables, provide valuable insights into brain function and overall health. This shift reflects the dynamic interaction between the cardiovascular, respiratory, and neural systems, which together support brain activity.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Qingdao 266003, China. Electronic address:
Emergency bleeding presents significant challenges such as high blood flow and rapid hemorrhaging. However, many existing hemostatic bandages face limitations, including the uncontrolled release of hemostatic agents, insufficient mechanical strength, poor adhesion, and complex manufacturing processes. To address these limitations, we developed a multifunctional hydrogel bandage for emergency hemostasis using a one-pot synthesis method.
View Article and Find Full Text PDFJ Food Drug Anal
December 2024
Cardiovascular Research Group, Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad-22060, KP, Pakistan.
Cinnamic acid (CA) possesses important cardiovascular effects such as cardioprotective, antiatherogenic, antihyperlipidemic and antioxidant, which predicts its potential role in the treatment of hypertension. The study was executed to investigate the antihypertensive potential of CA in Sprague Dawley (SD) rats followed by evaluation in diverse vascular preparations. Invasive blood pressure monitoring technique was used in normotensive and hypertensive rats, under anesthesia.
View Article and Find Full Text PDFSci Adv
January 2025
Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT 06511, USA.
Fluid shear stress (FSS) from blood flow sensed by vascular endothelial cells (ECs) determines vessel behavior, but regulatory mechanisms are only partially understood. We used cell state transition assessment and regulation (cSTAR), a powerful computational method, to elucidate EC transcriptomic states under low shear stress (LSS), physiological shear stress (PSS), high shear stress (HSS), and oscillatory shear stress (OSS) that induce vessel inward remodeling, stabilization, outward remodeling, or disease susceptibility, respectively. Combined with a publicly available database on EC transcriptomic responses to drug treatments, this approach inferred a regulatory network controlling EC states and made several notable predictions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!