Dual effects of LPS antibodies on cellular uptake of LPS and LPS-induced proinflammatory functions.

J Immunol

Department of Medicine, Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Bethesda, Maryland 20814, USA.

Published: October 1997

Human phagocytes recognize bacterial LPS (endotoxin) through membrane CD14 (mCD14), a proinflammatory LPS receptor. This study tested the hypothesis that anti-LPS Abs neutralize endotoxin by blocking cellular uptake through mCD14. Ab-associated changes in the uptake and cellular distribution of FITC-LPS were assessed by flow cytometry and laser scanning confocal microscopy in human CD14-transfected Chinese hamster ovary fibroblasts (CHO-CD14 cells) and human peripheral blood monocytes. LPS core- and O-side chain-specific mAbs inhibited mCD14-mediated LPS uptake by both cell types in the presence of serum. O-side chain-specific mAb concurrently enhanced complement-dependent LPS uptake by monocytes through complement receptor-1 (CR1) and uptake by CHO-CD14 cells involving another heat-labile serum factor(s) and cell-associated recognition molecule(s). Core-specific mAb inhibited mCD14-mediated uptake of homologous and heterologous LPS, while producing less concurrent enhancement of non-mCD14-mediated LPS uptake. The modulation by anti-LPS mAbs of mCD14-mediated LPS uptake was associated with inhibition of LPS-induced nuclear factor-kappaB (NF-kappaB) translocation and TNF-alpha secretion in CHO-CD14 cells and monocytes, respectively, while mAb enhancement of non-mCD14-mediated LPS uptake stimulated these activities. LPS-specific Abs thus mediate anti-inflammatory and proinflammatory functions, respectively, by preventing target cell uptake of LPS through mCD14 and augmenting uptake through CR1 or other cell receptors.

Download full-text PDF

Source

Publication Analysis

Top Keywords

lps uptake
20
lps
12
uptake
12
cho-cd14 cells
12
cellular uptake
8
uptake lps
8
proinflammatory functions
8
o-side chain-specific
8
inhibited mcd14-mediated
8
mcd14-mediated lps
8

Similar Publications

Bacterial Nanovesicles as Interkingdom Signaling Moieties Mediating Pain Hypersensitivity.

ACS Nano

January 2025

Department of Internal Medicine-Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, United States.

Gut dysbiosis contributes to multiple pathologies, yet the mechanisms of the gut microbiota-mediated influence on systemic and distant responses remain largely elusive. This study aimed to identify the role of nanosized bacterial extracellular vesicles (bEVs) in mediating allodynia, i.e.

View Article and Find Full Text PDF

Background: Sepsis-induced acute lung injury (S-ALI) significantly contributes to unfavorable clinical outcomes. Emerging evidence suggests a novel role for ferroptosis in the pathophysiology of ALI, though the precise mechanisms remain unclear. Mild hypothermia (32-34 °C) has been shown to inhibit inflammatory responses, reduce oxidative stress, and regulate metabolic processes.

View Article and Find Full Text PDF

Background: Parkinson's disease (PD) is one of the most common neurodegenerative disorders. Previous research has confirmed that isofraxidin can reduce macrophage expression and inhibit peripheral inflammation. However, its effects on the central nervous system remain underexplored.

View Article and Find Full Text PDF

Background: Vascular endothelial cell-derived exosomes are thought to mediate disease progression by regulating macrophage polarization. However, its mechanism in diabetes mellitus (DM)-related atherosclerosis (AS) progress is unclear.

Methods: High-glucose (HG) and oxLDL were used to induce human cardiac microvascular endothelial cells (HCMECs) to mimic DM-related AS model.

View Article and Find Full Text PDF

The Role of Scavenger Receptor BI in Sepsis.

Int J Mol Sci

December 2024

Department of Pharmacology and Nutritional Sciences, University of Kentucky College of Medicine, Lexington, KY 40536, USA.

Sepsis is a life-threatening condition resulting from a dysregulated host response to infection. Currently, there is no effective therapy for sepsis due to an incomplete understanding of its pathogenesis. Scavenger receptor BI (SR-BI) is a high-density lipoprotein (HDL) receptor that plays a key role in HDL metabolism by modulating the selective uptake of cholesteryl ester from HDL.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!