Outward currents of freshly dissociated ureteral myocytes consist mainly of Ca(2+)-activated K+ current (IKCa) and a transient outward current (ITO). No delayed rectifier current was apparent. IKCa is small and nondecaying and fluctuates actively and irregularly. Blocking IKCa decreased resting membrane conductance and prolonged action potential plateaus, showing its roles in maintaining the resting potential and in repolarizing action potentials. It is also responsible for the membrane potential fluctuations on action potential plateaus. Neither 8-(diethylamino)octyl-3,4,5-trimethoxybenzoate hydrochloride nor caffeine reduced the fluctuations in the outward current or in the action potentials, indicating that internal Ca2+ storage contributes little to the fluctuations. ITO has fast activation and inactivation kinetics with inactivation time constants of approximately 15 and 150 ms, respectively. Its highly negative voltage-availability relationship (V0.5 = -70.5 mV) suggests a low availability (< 5%) at normal resting potentials. It has only trivial effects on action potentials.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpcell.1997.273.3.C962DOI Listing

Publication Analysis

Top Keywords

action potentials
16
ureteral myocytes
8
outward current
8
action potential
8
potential plateaus
8
action
6
potentials
5
roles outward
4
outward potassium
4
potassium currents
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!