Download full-text PDF |
Source |
---|
Adv Sci (Weinh)
January 2025
Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
The commercialization of metasurfaces is crucial for real-world applications such as wearable sensors, pigment-free color pixels, and augmented and virtual reality devices. Nanoparticle-embedded resin-based nanoimprint lithography (PER-NIL) has shown itself to be a low-cost, high-throughput manufacturing method enabling the replication of high-index nanostructures. It has been extensively integrated into the fabrication of hologram metasurfaces, metalenses, and sensors due to its procedural simplicity.
View Article and Find Full Text PDFArch Dis Child Fetal Neonatal Ed
January 2025
Centre for Perinatal Research, University of Nottingham, School of Medicine, Nottingham, UK
Objective: To assess the utility of a bespoke smartphone app to map noise and vibration exposure across neonatal road ambulance journeys.
Design And Setting: Prospective observational study of ambulance journeys across a large UK neonatal transport service. Smartphones, with an in-house developed app, were secured to incubator trolleys to collect vibration and noise data for comparison with international standards.
Ann Otol Rhinol Laryngol
February 2025
Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China.
Biosens Bioelectron
February 2025
Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, CA, 92093, USA. Electronic address:
Diagnostic approaches that combine the high sensitivity and specificity of laboratory-based digital detection with the ease of use and affordability of point-of-care (POC) technologies could revolutionize disease diagnostics. This is especially true in infectious disease diagnostics, where rapid and accurate pathogen detection is critical to curbing the spread of disease. We have pioneered an innovative label-free digital detection platform that utilizes Interferometric Reflectance Imaging Sensor (IRIS) technology.
View Article and Find Full Text PDFBiosens Bioelectron
February 2025
Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China. Electronic address:
In this work, with parathion, a typical forbidden organophosphate pesticide as target drug, an enhanced nanobody-driven bioluminescent immunoassay based on the engineered split-nanoluciferase (NanoLuc) was proposed. Concretely, through labeling 11S and β10, two split-NanoLuc units onto the anti-parathion nanobody (Nb) VHH9 and the artificial antigen H1 coupled with carrier protein ovalbumin (H1-OVA) respectively, an NanoLuc Binary Technology (NanoBiT) system was firstly developed in the form of homogeneous immunoassay, in which the luminescence signal was produced by the reassembled NanoLuc after the combination of the 11S-fused VHH9 and β10-labeled H1-OVA. Subsequently, in order to enhance the signal-to-noise (S/N) ratio, a novel strategy of splitting 11S into two smaller subunits Δ11S and β9 was adopted so then an NanoLuc Ternary Technology (NanoTeT) system based on tri-part components of β9-fused VHH9, β10-labeled H1-OVA and Δ11S was successfully established.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!