Biomechanics of the thoracolumbar spine.

Neurosurg Clin N Am

Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.

Published: October 1997

The thoracolumbar spine is the principal load-bearing structure of the body. As such, it is subject to a wide variety of forces that can be described by biomechanical principles. Forces act through vectors, depending on the direction of force and the relative location of the instantaneous axis of rotation. Patterns of failure due to supraphysiologic loading or through the loss of structural integrity may be predicted based on the applied force vectors and the stabilization components lost. An understanding of these forces and their effects on the spine is crucial for the safe and efficacious treatment of spinal deformities.

Download full-text PDF

Source

Publication Analysis

Top Keywords

thoracolumbar spine
8
biomechanics thoracolumbar
4
spine thoracolumbar
4
spine principal
4
principal load-bearing
4
load-bearing structure
4
structure body
4
body subject
4
subject wide
4
wide variety
4

Similar Publications

A new 3D full-body scanner analyzing the sagittal and coronal balance of the adult spine: a preliminary prospective observational study.

Acta Neurochir (Wien)

January 2025

Department of Orthopaedic Surgery, Seoul National University College of Medicine, SMG-SNU Boramae Medical Center, 20 Boramae-Ro 5-Gil, Dongjak-Gu, Seoul, Republic of Korea.

Background: The degenerative spondylosis can cause the difficulty in maintaining sagittal and coronal alignment of spine, and X-ray parameters are the gold standard to analyze the malalignment. This study aimed to develop a new 3D full body scanner to analyze the spinal balance and compare it to X-ray parameters.

Methods: Ninety-seven adult participants who suffer degenerative spondylosis underwent 3D full body scanning, whole spine X-rays, clinical questionnaires and body composition analyses.

View Article and Find Full Text PDF

Background: Ankylosing spondylitis (AS) is a chronic autoimmune disease that affects the spine and peripheral joints, often leading to kyphosis, joint stiffness, and even ankylosis. Sagittal parameters, such as total thoracic kyphosis (TTK), thoracic kyphosis (TK), major thoracic kyphosis (MTK), and thoracolumbar kyphosis (TLK), are crucial indices for evaluating spinal alignment in AS patients and can reflect disease progression. This study aims to explore the relationship between bone mineral density (BMD), sagittal parameters, and joint ankylosis in AS patients.

View Article and Find Full Text PDF

Background: Degenerative lumbar scoliosis (DLS) represents a distinct subset of adult spinal deformity, frequently co-occurring with thoracolumbar kyphosis (TLK) in the sagittal plane. TLK is typically viewed as detrimental in degenerative spinal conditions and has been linked to increased pain severity and a higher prevalence of mechanical complications (MC) as previously reported. The present study aimed to identify the risk factors associated with the development of MC in patients with DLS and concomitant TLK.

View Article and Find Full Text PDF

Objective: The aim of this work is to demonstrate how the chronicity of low back pain can modify the trophism of the paraspinal muscles, by performing an ultrasound and MRI evaluation of the paraspinal muscles in the lumbar spine and correlating it to the time of onset of low back pain.

Materials And Methods: An ultrasound evaluation was carried out in the lumbar area with a 5-17 MHz linear probe of the paraspinal muscles of the lumbar region, compared with the MRI of the lumbar spine, in patients presented to our attention for chronic low back pain (> 6 months), from January 2021 to January 2023. In each patient, two series of images were analyzed, in the coronal and sagittal planes.

View Article and Find Full Text PDF

Study Design: A retrospective cohort study.

Objective: To determine if there is a difference in reoperations for adjacent segment disease (operative ASD) and nonunion (operative nonunion) in lumbar fusions that stop at T10/T11/T12 versus L1.

Summary Of Background Data: Current lumbar spine surgery is based on the belief that ASD occurs if fusions are stopped at L1 although there is varying evidence to support this assumption.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!