Three multiparous Holstein cows in midlactation were fitted with ruminal and duodenal cannulas. Cows were used in an experiment with a 3 x 3 Latin square design to study the effect of corn processing on nutrient flow from the rumen to the duodenum and on ruminal fermentation in lactating cows. Cows were fed diets consisting of 40% forage and 60% concentrate. The only difference in dietary ingredients was the type of processed corn included at 24% of the total diet (as-fed basis). Treatments were dry-rolled corn with a bulk density of 0.54 kg/L and steam-flaked corn with a bulk density of either 0.39 kg/L or 0.31 kg/L. Ruminal fluid pH was not affected by corn processing, but steam-flaking decreased the molar percentage of acetate and increased the molar percentage of propionate. Digestibility of starch in the rumen was not affected by processing. Digestibility of starch entering the duodenum as well as apparent digestibility of starch in the total tract were increased by steam-flaking. Flow of feed and microbial N from the rumen and microbial N efficiency were not affected by grain processing. Yields of milk and milk components as well as composition of milk were not affected by grain processing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3168/jds.S0022-0302(97)76154-X | DOI Listing |
Microb Cell Fact
January 2025
Department of Botany, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
Background: In response to iron deficiency and other environmental stressors, cyanobacteria producing siderophores can help in ameliorating plant stress and enhancing growth physiological and biochemical processes. The objective of this work was to screen the potential of Arthrospira platensis, Pseudanabaena limnetica, Nostoc carneum, and Synechococcus mundulus for siderophore production to select the most promising isolate, then to examine the potentiality of the isolated siderophore in promoting Zea mays seedling growth in an iron-limited environment.
Results: Data of the screening experiment illustrated that Synechococcus mundulus significantly recorded the maximum highest siderophore production (78 ± 2%) while the minimum production was recorded by Nostoc carneum (24.
BMC Plant Biol
January 2025
Maize and Millet Research Institute, Yousafwala, Sahiwal, Pakistan.
Heat stress poses a significant challenge for maize production, especially during the spring when high temperatures disrupt cellular processes, impeding plant growth and development. The B-cell lymphoma-2 (Bcl-2) associated athanogene (BAG) gene family is known to be relatively conserved across various species. It plays a crucial role as molecular chaperone cofactors that are responsible for programmed cell death and tumorigenesis.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization, Ministry of Agriculture and Rural Affairs, Anhui Engineering Research Center for High Value Utilization of Characteristic Agricultural Products, College of Tea & Food Science and Technology, Anhui Agricultural University, Hefei, China. Electronic address:
This study investigated the effect of different-polarity aqueous ethanol solutions on the formation of V-type starch originating from corn starch. Scanning electron microscopy revealed that the morphology of starch transformed from a random lamellar structure to a granular structure with decreasing solution polarity. When the ethanol concentration increased from 40 % to 60 %, the crystallinity and single-helix ratio of V-type starch increased from 9.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, United States.
Field pennycress () is a new biofuel winter annual crop with extreme cold hardiness and a short life cycle, enabling off-season integration into corn and soybean rotations across the U.S. Midwest.
View Article and Find Full Text PDFFood Chem
December 2024
School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China; Zibo City Key Laboratory of Agricultural Product Safety Traceability, No. 266 Xincun Xilu, Zibo, Shandong 255049, China. Electronic address:
Grains and oilseeds, including maize, wheat, and peanuts, are essential for human and animal nutrition but are vulnerable to contamination by fungi and their toxic metabolites, mycotoxins. This review provides a comprehensive investigation of the applications of hyperspectral imaging (HSI) technologies for the detection of fungal and mycotoxins contamination in grains and oilseeds. It explores the capability of HSI to identify specific spectral features of contamination and emphasized the critical role of sample properties and sample preparation techniques in HSI applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!